

CORONATION (26 SHEPHERD STREET) PTY LTD

GEOTECHNICAL INVESTIGATION REPORT

26-28 Shepherd Street, Liverpool, NSW

Report E23125 GA Rev2 21 December 2016

Report Distribution

Geotechnical Investig	ation Report	
26-28 Shepherd Stree	t, Liverpool, NSW	
El Report No.	E23125 GA Rev2	
Date:	21 December 2016	
Copies		Recipient
1 Soft Copy (PDF – Secured, issued by email)		Danielle Ellos
		Coronation (26 Shepherd Street) Pty Ltd
		Level 2, 66 Wentworth Avenue,
		SURRY HILLS NSW 2010
1 Original (Saved to Digit	al Archives)	El Australia
		Suite 6.01, 55 Miller Street
		PYRMONT NSW 2009

Authors:

hip

Technical Reviewer:

Janak Patel Senior Geotechnical Engineer Joseph Chaghouri Senior Geotechnical Engineer

Revision	Details	Date	Amended By
	Draft	17 November 2016	JP
	Final	21 November 2016	JP
	Revision 1	7 December 2016	JP
	Revision 2	21 December 2016	JP

© El Australia (El) 2016

This report is protected by copyright law and may only be reproduced, in electronic or hard copy format, if it is copied and distributed in full and with prior written permission by El.

CONTENTS

1	INT	RODUCTION	1
1.1	E	BACKGROUND	1
1.2	F	PROPOSED DEVELOPMENT	1
1.3		NVESTIGATION OBJECTIVES	2
1.4	S	SCOPE OF WORKS	2
1.5		NVESTIGATION CONSTRAINTS	3
2		E DESCRIPTION	
2.1	S	SITE DESCRIPTION AND IDENTIFICATION	1
2.2	L	OCAL LAND USE	5
2.3	F	REGIONAL SETTING	5
3	INV	ESTIGATION RESULTS	3
3.1	S	STRATIGRAPHY	3
3.2	(GROUNDWATER OBSERVATIONS	7
3.3	٦	EST RESULTS	7
4	REC	COMMENDATIONS)
4.1	0	GEOTECHNICAL ISSUES	9
4.2	[DILAPIDATION SURVEYS	9
4.3	E	EXCAVATION METHODOLOGY	9
4.4	(GROUNDWATER CONSIDERATIONS)
4.5		EXCAVATION RETENTION	
4.6		OUNDATIONS14	
5		COMMENDATIONS FOR FURTHER GEOTECHNICAL SERVICES10	
6		TEMENT OF LIMITATIONS	
7		ERENCES	
8		3REVIATIONS18	5
TABL	_		
Table	2-1	Summary of Site Information	ł
Table	2-2	Summary of Local Land Use	5
Table	2-3	Topographic, Geological and Hydrogeological Information	5
Table	3-1	Summary of Subsurface Conditions	3
Table	3-2	Summary of Groundwater Levels	7
Table	3-3	Summary of Laboratory Test Results	3
Table	4-1	Geotechnical Design Parameters	3
FIGUI	RES		
1 2 APPE	Bo	re Locality Plan brehole Location Plan CES	

- A Borehole Logs and Explanatory Notes
- B Laboratory Certificates
- C Borehole Logs, Core Photos, and Laboratory Test Results (Asset Geotechnical Engineering Pty Ltd)
- D Vibration Limits
- E Important Information

1 INTRODUCTION

1.1 BACKGROUND

At the request of Coronation (26 Shepherd Street) Pty Ltd (the Client), El Australia (El) has carried out a Geotechnical Investigation (GI) for the proposed development at 26-28 Shepherd Street, Liverpool, NSW (the Site).

This GI report has been prepared to provide advice and recommendations to assist the designers in the preparation of designs for the proposed development. The investigation has been carried out in accordance with the scope of work outlined in El's proposal referenced P13774.2, dated 13 April 2016.

A Groundwater Take Assessment (GTA) will be prepared once the final shoring design is provided. The purpose of the GTA, which will be completed using the computer software Seep/W, is to estimate the groundwater infiltration rates and to check if the water entering the basement can be managed with conventional sump and pump methods.

El has also been commissioned by Coronation (26 Shepherd Street) Pty Ltd to carry out environmental Preliminary Site Investigation Report (PSI) for the site, referenced E23125 AA, Rev 0, and dated 14 October 2016. This report should be read in conjunction with the PSI report.

1.2 PROPOSED DEVELOPMENT

To assist us with the preparation of this GI report, the Client has supplied EI with:

- Architectural drawings of the proposed development prepared by Woods Bagot Pty Ltd, Project No. 120809, Drawing Nos. DA011-DA015 and DA018, Revision P12; DA016 and DA017, Revision P11; DA019, Revision P8; all dated 29 July 2016 and Project No. 120597/120809, Drawing Nos. A022B1 and A022B2, dated 12 December-2016; Drawings Nos. A23202 and A23203, Revision P13, dated 14 December 2016.
- Preliminary basement set out plan prepared by SDG Land Development Solutions, Ref: 6352, DWG: 7054 160916 PREL BASE, dated 16 September 2016;
- Detailed survey plan of the site prepared by SDG Land Development Solutions, Ref. 6683, Issue A, dated 12/02/16, The datum is Australian Height Datum (AHD), all Reduced Levels (RL) mentioned in this report are in AHD; and
- Report prepared by Structural Design Solutions RE: 28 Shepherd Street, Liverpool Excavation of Basement, dated 2 December 2016.

A geotechnical report prepared by Asset Geotechnical Engineering Pty Ltd, titled *Preliminary Salinity and Acid Sulphate Soils Assessment*, Report No. 2936-R1, dated 15 April 2015.A geotechnical investigation had been previously carried out by Asset Geotechnical Engineering Pty Ltd (Asset) for 28 Shepherd Street, and the results are presented in their report referenced above. The borehole logs, core photos and laboratory test results completed by Asset have been incorporated into the recommendations made within this report and are presented in Appendix C of this report.

Based on the above documents and discussions with the Client, El understands that the proposed development will involve the demolition of all existing site structures and the construction of two buildings, 26 Shepherd Street will include fourteen and two storey building and 28 Shepherd Street will include seven and two storey building, both of which will be constructed over a two level common basement carpark. The Finished Floor Level (FFL) of Basement 2 (B2) is proposed to be at Reduced Level (RL) of 4.5m. A Bulk Excavation Level (BEL) of RL4.2m has been assumed to allow for the construction of B2 slab. Based on the latter, maximum bulk excavation to a depth of about 6.5m is expected. Locally deeper excavations for lift overrun pits, footings, crane pads, and service trenches may be required.

1.3 INVESTIGATION OBJECTIVES

The objective of the GI was to assess site surface and subsurface conditions at four borehole locations, and to provide geotechnical advice and recommendations addressing the following:

- Dilapidation Surveys;
- Excavation methodologies and monitoring requirements;
- Vibration considerations;
- Groundwater considerations;
- Excavation support requirements, including geotechnical design parameters for retaining walls and shoring systems;
- Building foundation options, including;
 - Design parameters.
 - Earthquake loading factor in accordance with AS1170.4:2007.
- Basement floor slab; and
- The requirement for additional geotechnical works.

1.4 SCOPE OF WORKS

The scope of works for the GI included:

- Preparation of a Work Health and Safety Plan;
- Review of relevant geological maps for the project area;
- Review of a geotechnical report prepared by Asset Geotechnical Engineering Pty Ltd
- Site walkover inspection by a Geotechnical Engineer to assess topographical features and site conditions;
- Electro-magnetic scanning of proposed borehole locations for buried conductive services using a licensed service locator with reference to Dial Before You Dig (DBYD) plans;
- Auger drilling of four boreholes (BH101M, BH102M, BH103 and BH104) by a track-mounted drill rig using solid flight augers equipped with a 'Tungsten-Carbide' (T-C) bit attachment to depths of about 9.1m (or about RL 1.6m AHD), 7.45m (or about RL 3.3m AHD) 8.1m (or about 2.4m AHD) and 9.3m BEGL (or about 1.3m AHD) respectively. Approximate borehole locations are shown on Figure 2. The approximate surface levels shown on the borehole logs were interpolated from spot levels shown on the supplied survey plan, which formed the basis of Figure 2;
- Standard Penetration Testing (SPT) during auger drilling of the boreholes at regular intervals to assess soil
 strength/relative densities. These were augmented, where possible, by hand penetrometer readings on
 cohesive soil samples collected in the SPT split tube sampler. Selected soil samples were sent to Macquarie
 Geotechnical Pty Ltd (Macquarie) and SGS Australia Pty Ltd (SGS), which are National Australian Testing
 Authority (NATA) accredited laboratories, for testing and storage, The results of laboratory testing are
 attached in Appendix B;
- The strength of the bedrock in the augered section of the boreholes was assessed by observation of the
 auger penetration resistance using a T-C drill bit attached to the augers, examination of the recovered rock
 cuttings, and rock moisture content test results. It should be noted that rock strengths assessed from
 augered boreholes are approximate and strength variances can be expected;
- Boreholes BH101M, BH102M and BH103 were extended using NMLC diamond coring techniques, to termination depths of about 16.1m (or about - 5.4m AHD), 13.1m (or about -2.4m AHD) and 16.3m BEGL (or about -5.8m AHD), respectively. Rock core recovered from the boreholes were logged, photographed,

Page |3

boxed, and sent to Macquarie for point load strength index testing and storage. The rock core photographs and point load strength testing results are attached to this report. The test results are presented in **Appendix B**, and the rock core photographs are presented in **Appendix A**;

- Measurements of groundwater seepage/levels, where possible, in the augered sections of the boreholes during and shortly after completion of auger drilling. The groundwater levels within the installed monitoring wells were measured two days following development, ;
- Installation of three PVC standpipes in BH101M, BH102M and BH104M to allow for long term groundwater monitoring;
- Preparation of this GI report.

El Geotechnical Engineer was present on site to set out the borehole locations, direct the testing and sampling, log the subsurface conditions and record groundwater levels.

1.5 INVESTIGATION CONSTRAINTS

The GI was limited by the intent of the investigation. The discussions and advice presented in this report are intended to assist the designers in the preparation of designs for the development.

2 SITE DESCRIPTION

2.1 SITE DESCRIPTION AND IDENTIFICATION

The site identification details and associated information are presented in **Table 2-1** below while the site locality is shown on **Figure 1**.

 Table 2-1
 Summary of Site Information

Information	Detail
Street Address	26-28 Shepherd Street, Liverpool, NSW 2170
Lot and Deposited Plan (DP) Identification	Lots 22 and 23 in DP 859055
Local Government Authority	Liverpool City Council
Parish	St Luke
County	Cumberland
Current Zoning	R4 – High Density Residential (Liverpool Local Environment Plan, 2008)
Site Description	26 Shepherd Street: The site sloped gently from the west down towards the east. The Georges River is located adjacent to the eastern site boundary. At the time of the investigation, the site comprised of a brick and metal clad building with a metal roof in the north-eastern corner of the site. A metal shed was located in the northern corner of the site having Shepherd Street frontage. The remainder of the site is covered in gravelly fill material at surface. Access to the site was from Shepherd Street.
	28 Shepherd Street: The site is located on the eastern side of the street. The site sloped gently towards east. The Georges River is located adjacent to the eastern site boundary. At the time of fieldwork, the site comprised a disused steel frame warehouse within the western portion. Some small to medium sized trees were scattered around the site and remainder of the site was covered by grass and shrubs. The ground surface within the eastern portion steeply sloped down towards Georges River and appeared to be a part of an old landslip and subsequent erosion.
Site Area	8,681 m ² (SDG, Ref. No. 6683, Issue A, dated 12/02/16).

2.2 LOCAL LAND USE

The site is situated within an area of mixed residential and commercial use. Current uses on surrounding land are described in **Table 2-2** below.

Table 2-2	Summary of Local Land Use
-----------	---------------------------

Direction Relative to Site	Land Use Description
North	An on-going construction site for a multi-level building over a three level basement carpark immediately adjacent to the northern site boundary. The basement is assumed to extend up to the site boundary.
East	Georges River with setback between about 1m and 3m from the eastern site boundary. The southern part of the eastern boundary appeared to be an old landslip and subsequent erosion. At the time of our inspection, the standing water level in Georges River was about 4m lower than the site ground surface level.
South	A vacant site occupied by a brick building with the awnings to the west and east. The eastern and western portion of the site was concrete paved and concrete driveway was located within the road frontage. This site is proposed to be developed into multi-storey building over three level basement.
West	Shepherd Street, a two-lane asphaltic concrete road was locatedadjacent to the western site boundary.
	Beyond Shepherd Street lie commercial properties.

2.3 REGIONAL SETTING

The site topography and geological information for the locality is summarised in Table 2-3 below.

Table 2-3	Topographic, Geological and Hydrogeological Information
-----------	---

Attribute	Description
Topography	The site gently falls down from the south-western corner towards the eastern boundary. The site level ranges from about RL 12.2m AHD from the south-western corner to RL 9.5m AHD along the eastern boundary.
Regional Geology	Information on regional sub-surface conditions, referenced from the Department of Mineral Resources Geological Map Penrith 1:100,000 Geological Series Sheet 9130 (DMR 1991) indicates the site to be underlain by Quaternary fluvial deposits comprising medium grained sand, clay and silt.

INVESTIGATION RESULTS 3

3.1 STRATIGRAPHY

For the development of a site-specific geotechnical model, the observed stratigraphy during the GI has been grouped into five geotechnical units. A summary of the subsurface conditions across the site, interpreted from the investigations results, is presented in Table 3-1 below. More detailed descriptions of subsurface conditions at each borehole location are available on the borehole logs presented in Appendix A. The details of the method of soil and rock classification, explanatory notes and abbreviations adopted on the borehole logs are also presented in Appendix A.

Unit	Material ¹	Depth to top of Unit (m BEGL) ²	RL of top of Unit (m AHD) ²	Observed Thickness (m)	Material Description ¹	Comments
			10.7 to 10.1		FILL	Asphaltic-concrete pavement up to 160mm thick was encountered in BH104M overlying gravelly sandy clay fill.
1	Fill	0.0 (surface)		1.5 to 2.8		Sandy gravels, gravelly clay, sandy clay, clay, clayey sand.
						Fill appeared to be poorly compacted. Fill was not encountered in BH4.
						Silty clay, sandy clay and sandy clay, clayey sand and sand.
2	Alluvium Soil	1.5 to 2.8	9.2 to 7.7	5.7 to 9.6	SANDY/SILTY CLAYS and SANDS	Clays are of low to high plasticity and of firm to very stiff strength, and Sands are of loose to dense relative density with moist to wet moisture conditions.
						Unit 2 grades into weathered shale at depth.
						SPT N values ranged from 2 and 33, and hand penetrometer readings on the SPT sample ranged from 30kPa to 400kPa.
		Very ength 7.3 to 9.0	3.3 to 1.7	0.0 to 1.5	SHALE	Extremely low or very low strength, extremely to distinctly weathered shale.
2	Extremely Low to Very Low Strength Shale					A band of low strength shale was encountered in BH103.
3						Unit 3 was not encountered in BH101M, BH102M, BH103M, BH1, and BH4.
						Core loss of 1.3m encountered in BH4 has been inferred as Unit 3 material.
						Generally distinctly to slightly weathered and of low to medium strength shale.
	Low to					Unit 4 was not encountered in BH2 to BH6.
4	Low to Medium Strength Shale	7.3 to 9.5	3.4 to 0.6	0.5 to 1.5	SHALE	Defects in Unit 4 are generally very closely spaced to very widely spaced (20 to >2000mm), including sub- horizontal bedding partings, joints inclined up to 90° , and up to 13.5% decomposed and crushed seams.
5	Medium Strength Shale ³	8.0 to 10.0	2.7 to 0.1	1.4 to 5.1	SHALE	Generally slightly weathered to fresh and at least of medium strength.

Table 3-1 **Summary of Subsurface Conditions**

Notes: 1

For more detailed descriptions of the subsurface conditions, reference should be made to the borehole logs attached to Appendix A.

2 3 Approximate depth / RL at the time of our investigation. Depths and levels may vary across the site.

Unit 5 was observed up to termination depths in all cored boreholes except BH104, BH5, and BH6 as these were augered only.

3.2 GROUNDWATER OBSERVATIONS

Groundwater seepage was observed in BH101M, BH102M and BH104M during auger drilling at depths of about 7m (or about 3.7m AHD), 6m (or about 4.7m AHD) and 7.5m (or about 3.1m AHD) BEGL, respectively. The water induced during the coring process of the boreholes precluded further observations of the groundwater levels in BH101M, BH102M and BH103. However, following the completion of the fieldwork, three monitoring wells were installed in BH101M, BH102M and BH104M for further groundwater monitoring and were developed on the day of installation.

The groundwater levels in BH101M, BH102M and BH104M were recorded during a site visit on 28 September 2016. The groundwater levels in BH102M and BH104M were measured again on 14 October 2016.

Groundwater measurements taken by EI and Asset are presented in Table 3-2 below.

Borehole ID	Date of Observation	Approximate Depth to Groundwater (m BEGL)	Approximate RL of Groundwater (m AHD)	Approximate Bulk Excavation RL at Borehole Location (m AHD)
BH1 ¹	28 August 2014	5.3	4.8	
BH3 ¹	28 August 2014	7.0	3.6	-
BH101M	28 September 2016	6.4	4.3	-
BH02M	28 September 2016	6.6	4.1	1.7
BHOEM	14 October 2016	6.4	4.3	-
BH104M	28 September 2016	7.0	3.6	-
2	14 October 2016	7.0	3.6	-

Table 3-2 Summary of Groundwater Levels

Notes:

1 Groundwater measurements taken from the geotechnical report prepared by Asset Geotechnical Pty Ltd.

3.3 TEST RESULTS

Four soil and one groundwater sample(s) were scheduled for laboratory testing to assess the following:

- Atterberg Limits and Linear Shrinkage;
- Soil and rock Moisture Content;
- Soil and groundwater aggressivity (pH, Chloride and Sulfate content and electrical conductivity).

A summary of these test results is provided in **Table 3-3** below. The laboratory test certificates are presented in **Appendix B.**

Test/	Sample ID	BH102M	BH101M_7.5- 7.95	BH101M_1.5- 1.95	BH101M_4.5- 4.95	BH101_9.0-9.1	BH102_1.5-1.95
Unit		Groundwater	2	1	2	3a	2
Mat	erial Description ¹	-	Sandy CLAY	FILL	Sandy CLAY	SHALE	Silty CLAY
imit	Liquid Limit (%)	-	-	-	29	-	61
erg l	Plastic Limit (%)	-	-	-	13	-	18
Atterberg Limit	Plasticity Index (%)	-	-	-	16	-	43
Lin	ear Shrinkage (%)	-	-	-	7.0	-	14.5
	рН	6.7	7.5	8.3	-	-	-
Aggressivity	Electrical Conductivity (µS/cm)	8900	45	240	-	-	-
Aggn	Sulfate SO ₄ (mg/kg)	730	36	120	-	-	-
	Chloride Cl (mg/kg)	2500	2.9	7.2	-	-	-
Mo	isture Content (%)	-	22	16	15.7	11.8	23.3

Table 3-3 Summary of Laboratory Test Results

Notes:

More detailed descriptions of the subsurface conditions at each borehole location are available on the borehole logs presented in Appendix A.

42 rock core samples were tested by Macquarie to estimate the Point Load Strength Index (Is₅₀) values to assist with rock strength assessment. The results of the testing are summarised on the attached borehole logs and presented in **Appendix B**.

The point load strength index tests and moisture content results correlated reasonably well with our field assessments of rock strength. The approximate Unconfined Compressive Strength (UCS) of the rock core, estimated from correlations with the point load strength index test results from EI and Asset geotechnical investigations, varied from <1 MPa to 47 MPa.

The Atterberg Limits results on Unit 2 indicated that the sandy clay and silty clay to be of low and high plasticity, respectively, and have a slight to high potential for shrink/swell movements with changes in moisture content.

The assessment indicated low permeability soils were present. In accordance with Tables 6.4.2(C) and 6.5.2(C) of AS 2159:2009 'Piling – Design and Installation', the results of the pH, chloride and sulphate content and electrical conductivity of the soil, provided the following exposure classifications:

Soil:

- 'Mild to Non-aggressive' for buried concrete structural elements; and
- 'Non-aggressive' for buried steel structural elements.

In accordance with Table 4.8.1 of AS3600-2009 'Concrete Structures' the soil would be classified as exposure classification 'A1' for concrete in sulphate soils.

Groundwater:

- 'Non-aggressive' for buried concrete structural elements; and
- 'Non-aggressive' for buried structural elements.

In accordance with Table 4.8.1 of AS3600-2009 'Concrete Structures' the groundwater would be classified as exposure classification 'A1' for concrete in sulphate soils.

4 RECOMMENDATIONS

4.1 GEOTECHNICAL ISSUES

Based on the results of the investigation, we consider the following to be the main geotechnical issues for the proposed development:

- Given the very soft to firm clays encountered in BH1 (Asset), a working platform may be required to provide a trafficable surface during construction;
- Basement excavation and retention to limit lateral deflections and ground loss as a result of excavations, resulting in damage to nearby structures and stability of the riverbank, particularly to adjacent basement structures;
- Groundwater within the depth of the excavation;
- The proximity of the site to Georges River; and
- Foundation design for building loads.

4.2 DILAPIDATION SURVEYS

Prior to excavation and construction, we recommend that detailed dilapidation surveys be carried out on all structures and infrastructures surrounding the site that falls within the zone of influence of the excavation. The zone of influence of the excavation is defined by a distance back from the excavation perimeter of twice the total depth of the excavation. The reports would provide a record of existing conditions prior to commencement of the work. A copy of each report should be provided to the adjoining property owner who should be asked to confirm that it represents a fair assessment of existing conditions. The reports should be carefully reviewed prior to demolition and construction.

4.3 EXCAVATION METHODOLOGY

4.3.1 Excavation Assessment

Prior to any excavation commencing, we recommend that reference be made to the WorkCover Excavation Work Code of Practice – July 2015.

Bulk excavation to a depth of up to 6.5m BEGL is expected to be required to achieve the BEL of RL4.2m. Locally deeper excavations for footings, service trenches, crane pads and lifts overrun pits may be required.

Based on the borehole logs, the proposed basement excavations will therefore extend through Units 1 and 2 outlined in **Table 3-1** above. A retention system must be installed prior to excavation commencing.

Units 1 and 2 may be excavated using buckets of medium to large earthmoving Hydraulic Excavators.

4.3.2 Excavation Monitoring

Consideration should be made to the impact of the proposed development upon neighbouring structures and basements, roadways, Georges River embankment and services. Basement excavation retention systems should be designed so as to limit lateral deflections.

Contractors should also consider the following limits associated with carrying out excavation and construction activities:

- Limit lateral deflection of temporary or permanent retaining structures;
- Limit vertical settlements of ground surface at common property boundaries and services easement.; and
- Limit peak particle velocities (PPV) from vibrations, caused by construction equipment or excavation, experienced by any structure within bounding properties and the services easement.

Monitoring of deflections of retaining structures and surface settlements should be carried out by a registered surveyor at agreed points along the excavation boundaries and along existing building foundations/ services/ pavements and other structures located within or near the zone of influence of the excavation. Geotechnical engineer should review the survey monitoring results carried out by a registered surveyor. In addition, a geotechnical engineer should be present full time on site during drilling, excavation and construction of retaining structure to monitor and/or identify instability of excavated faces, tension cracks and/or any visible sign of ground settlement behind the retaining structure. Owners of existing services adjacent to the site should be consulted to assess appropriate deflection limits for their infrastructure. Measurements should be taken:

- Before commencement of retaining structures where appropriate to determine baseline readings. Two independent sets of measurements must be taken confirming measurement consistency;
- After construction of the retaining structures, but before commencement of excavation;
- After excavation to the first row of supports or anchors, but prior to installation of these supports or anchors;
- After excavation to any subsequent rows of supports or anchors, but prior to installation of these supports or anchors;
- After excavation to the base of the excavation;
- After de-stressing and removal of any rows of supports or anchors;
- One month after completion of the permanent retaining structure or after three consecutive measurements not less than a week apart showing no further movements, whichever is the latter.

4.4 GROUNDWATER CONSIDERATIONS

Groundwater was observed within the monitoring wells installed by both EI and Asset. The latest groundwater measurements in BH101M, BH102M and BH104M were recorded at depths of about 6.4m (RL 4.3m AHD), 6.4m (RL 4.3m AHD) and 7.0m BEGL (RL 3.6m AHD), respectively. Groundwater levels measured in monitoring wells BH1 and BH3 indicated groundwater depths of 5.3m (RL 4.8m AHD) and 7.0m BEGL (RL 3.6m AHD), respectively. These results show groundwater across the site to be at or just above the proposed BEL of RL 4.2m AHD. Depending on groundwater levels at the time of construction, dewatering could be required in some areas of the site, so that the basement can be constructed in 'dry' conditions. Based on current groundwater condition, we expect that the seepage into the excavation would be low and be satisfactorily controlled by conventional sump and pumping.

. We recommend that prior to bulk excavation commencing, further groundwater monitoring with pump out tests be carried out in the installed wells together with seepage analysis using computer software such as SEEP/W for estimation of seepage volumes into the excavation.

The boreholes encountered a profile of clayey sand or sand below the BEL, which are expected to have high permeability, therefore we recommend the construction of a full tanked basement structure. The basement slab should be designed to resist hydrostatic uplift pressures which may require additional mass or ground anchors. It is also noted that high seepage rates are anticipated due to the presence of Georges River to the south of the site. We also expect that hydrostatic pressures will be governed by flood levels within the Georges River. In this regards, we recommend that relief valves be installed to account for such flooding.

4.5 EXCAVATION RETENTION

4.5.1 Support Systems

From a geotechnical perspective, it is critical to maintain the stability of the adjacent structures and infrastructures during demolition, excavation and construction works.

Due to the fact that the proposed basement excavation will extend to all site boundaries, temporary batter slopes of the soil and weathered rock profile are not recommended for this site. Unsupported vertical cuts of the soil and

weathered rock profile are not recommended for this site as these carry the risk of potential collapse/slump failure especially after a period of wet weather. Collapse/failure of the material may result in injury to personnel and/or damage to nearby structures/infrastructures and equipment.

We understand that it is proposed to support the excavation by an anchored soldier pile wall. We stress that the gaps between the piles must be sealed by shotcrete or mass concrete, immediately and without delay at maximum excavation depth intervals of 1m to avoid collapse/slumping of the material between the piles, particularly below groundwater and/or during and following wet weather. Slumping/collapse of the material may regress backwards and may result in damage to nearby structures/infrastructures. Over excavation (i.e. deeper than 1m) must not be attempted for this site. During the selection of the shoring system, the risk associated with each type of shoring wall must be assessed by the client.

Alternatively, an anchored and/or propped contiguous or secant pile walls should be used to support the excavation. Alternate piles are first drilled and concreted at close spacing. The intermediate piles are then installed by drilling out the soil between each pair and part of the already installed piles. Cased secant methods provide a high degree of security when in granular soils adjacent to heavily loaded foundations or adjacent to structures. Use of specialist high capacity, cased continuous flight auger rigs is likely to result in little disengagement of the secant piles. Should the second 'hard' piles disengage from the first 'soft' piles, then remedial works would be required to rectify any seepage inflows. Any gaps between the piles may result in loss of material and water inflow from behind the wall which may lead to settlements adjacent to the wall and may result in damage to neighbouring structures and services. The resulting out of position piles may also affect internal layout/clearances.

Anchors and/or props must be installed progressively as excavation proceeds. The piles must be installed to below BEL and socketed into Unit 5 or better.

Due to the presence of the embankment, deep fluvial soil profile and proximity of Georges River to the east, anchors may not be possible and hence, internal props or bracing may be required. In addition, Details of adjoining proposed basements, shoring pile walls and anchors must be obtained prior to final design.

Grout injected CFA piles will be required for this site. However, relatively large capacity piling rigs (e.g. Soilmec SR-40 or larger) will be required for drilling through the shale bedrock. The proposed pile locations should take into account the presence of the neighbouring anchors and/or the presence of buried services. Further advice should be sought from prospective piling contractors who should be provided with a copy of this report. Working platforms may also be required. Bored piers could be attempted for the shoring wall, but significant difficulties with collapse of the poorly compacted fill and alluvial soils due to groundwater inflow will probably be experience. The use of liners, pumps, and tremie concreting techniques may overcome some of these difficulties, but bored pier are still likely to be impractical. If bored piers are to be used, we recommend that trial piers be drilled to assess potential construction difficulties at start of the work.

Given the very soft to firm clays encountered in BH1 (Asset), at some point during excavation works, a working platform of good quality granular material, possibly with geogrid reinforcement, may be required to provide a trafficable surface during construction. The details of the working platform should be determined following inspection of the subgrade as the final thickness will depend on the quality of the subgrade and the equipment that will need to traffic the base.

In addition, we recommend that assessment of the potential impact of the excavation on the embankment to the east be carried out using a computer software such as Slope/W.

4.5.2 Retaining Walls Design Parameters

The following parameters may be used for static design of temporary and permanent retaining walls at the subject site:

 For progressively anchored or propped walls where minor movements can be tolerated (provided there are no buried movement sensitive services), we recommend the use of a trapezoidal earth pressure distribution of 5H kPa for soil and shale bedrock, where H is the retained height in meters. These pressures should be assumed to be uniform over the central 50% of the support system;

- For progressively anchored or propped walls which support areas which are highly sensitive to movement (such as areas where movement sensitive structures or infrastructures or buried services are located in close proximity), we recommend the use of a trapezoidal earth pressure distribution of 8H kPa for soil and shale bedrock, where 'H' is the retained height in meters. These pressures should be assumed to be uniform over the central 50% of the support system;
- The walls must be designed for full hydrostatic pressures, which may occur as a result of flooding of the adjacent Georges River. The shoring design will need to take into account differential pressures inside and outside the excavation due to flooding, etc. The hydrostatic pressure should extend to the base of the perimeter cut-off.
- Appropriate surcharge loading affecting the walls (including from construction equipment, construction loads, adjacent high level footings, shoring walls, etc.) should be adopted in the retaining wall design as an additional surcharge using an 'at rest' earth pressure coefficient, k_o, of 0.58;
- For piles embedded into Unit 4 or better, the allowable lateral toe resistance value outlined in **Table 4-1** below may be adopted. These values assume excavation is not carried out within the zone of influence of the wall toe and the rock does not contain adverse defects etc. The upper 0.3m depth of the socket should not be taken into account to allow for tolerance and disturbance effects during excavation
- If temporary anchors extend beyond the site boundaries, then permission from the neighbouring developments would need to be obtained prior to installation. Also, the presence of neighbouring basements or services and their levels must be confirmed prior to finalising anchor design.
- Soil anchors should be bonded into medium or denser sands and/or very stiff clays and may be designed for a drained angle if internal friction Φ', as shown in Table 4-1 below may be used, subject to the following conditions:
 - Anchors are to be installed with casing within the soil profile to prevent soil collapse and settlement during installation.
 - Anchor should have their free length equal to their height above the base of the excavation and have bond lengths of at least 3m behind the 'active' zone of the excavation (taken as a 45 degree zone above the base of the excavation) is provided;
 - Overall stability, including anchor group interaction, is satisfied;
 - All anchors should be proof loaded to at least 1.33 times the design working load before locked off at working load. Such proof loading is to be witnessed by and engineer independent of the anchoring contractor. We recommend that only experienced contractors be considered for anchor installation with appropriate insurances;
 - If permanent anchors are to be used, these must have appropriate corrosion provisions for longevity.
 - If anchor installation is not feasible due to presence of alluvial soil then provision of internal propping or struts will be required.

Table 4-1 **Geotechnical Design Parameters**

Material ¹ RL of Top of Unit (m AHD) ²		Unit 1 Fill	Unit 2 Alluvial Soil	Unit 3 Extremely Low to Very Low Strength Shale	Unit 4 Low to Medium Strength Shale	Unit 5 Medium Strength Shale	
		10.7 to 10.1(Surface)	9.2 to 7.7	3.3 to 1.7	3.4 to 0.6	2.7 to 0.1	
Bulk Uni	t Weight (kN/m ³)	18	19	20	23	24	
	Angle of Internal ction, Φ' (°)	25	27	30	40	40	
Earth	At rest, K ₀ ³	0.58	0.55	0.50			
Pressure	Active, Ka ³	0.41	0.33	0.33			
Coefficients	Passive, Kp ³	-	-	-			
Preliminary Allowable Bearing Pressure (kPa) ⁵		-	100 (Shallow footing only)	-	1500	3500	
Allowable Shaft	in Compression	-	-	-	150	300	
Adhesion (kPa) ^{4, 5}	in Uplift	-	-	-	75	150	
Ultimate Bearing Pressure (kPa) 6,7		-	300 (Shallow footing only)	-	3000	30,000	
Ultimate Sha 7	ft Adhesion (kPa) ^{6,}	-	-	-	1500	600	
Toe Resistar	nce (kPa)	-	-	-	100	350	
Bond Stress	()	-	-	-	75-	300	
Earthquake Site Risk Classification		 AS 1170.4:2007 indicates an earthquake subsoil class of Class B_e.(Rock) AS 1170.4:2007 indicates that the hazard factor (z) for Sydney is 0.08. 					
2 Appr 3 Earth 4 Allow categ		at the time of our investigation the assumption that the group s given assume there is in rigineer to check both 'piston	on. Levels may vary ac und behind the retainin timate contact betwee	ross the site. g walls is horizontal. n the pile and foundation	A. material and should achiev nce with AS4678-2002 Earth		

Piles have a nominal socket of at least two pile diameters or 1 m, whichever is greater, into the relevant founding material;

There is intimate contact between the pile and foundation material (a clean socket roughness category of R2 or better);

Potential soil and groundwater aggressivity will be considered in the design of piles;

The pile should be drilled in the presence of a suitably qualified Geotechnical Engineer prior to pile construction to verify that ground conditions meet design assumptions. Pile excavations should be pumped dry of water prior to pouring concrete, or alternatively a tremie methods should be used;

The base of all footing excavations are cleaned of loose and softened material and water is pumped out prior to placement of concrete;

The concrete is poured on the same day as drilling, inspection and cleaning. The allowable bearing pressures given above are based on serviceability criteria of settlements at the footing base/pile toe of less than or equal to 1% of the minimum footing dimension (or pile diameter).

For side shear only sockets (in tension), we recommend a geotechnical reduction factor, ϕ_g , of 0.5 to be used.

6 7 We recommend a basic geotechnical strength reduction factor, Φ_{gb} , of 0.56 calculated from Table 4.3.2 (A, B, and C) of AS2159-2009: Piling Design and Installation, be adopted.

Furthermore, any existing buried services which run below the site will require diversion prior to the commencement of excavation or alternatively be temporarily supported during excavation, subject to permission or other instructions from the relevant service authorities. Enguiries should also be made for further information and details, such as invert levels, on the buried services.

4.6 FOUNDATIONS

Following bulk excavations, we expect Unit 2b sandy clay or clayey sand to be exposed over the B2 BEL of RL - 4.2m.

Shallow footings may be considered using the bearing pressure values outlined in **Table 4-1** above. It is recommended that all footings be founded within material of similar strength to provide uniform support and reduce the potential for differential settlements.

The following support systems may be considered for support of the proposed development:

- Shallow pad and/or strip footings, stiffened raft slab, piled stiffened raft slab on Unit 2b. However, shallow pad and/or strip footings may be susceptible to differential settlements and our preference is the use of the stiffened raft slab/piled stiffened raft slab;
- Piled footing socketed in Unit 4 and 5 shale.

In the case of a pile stiffened raft slab, the piles are designed to their ultimate capacity and act as settlement reducers to the stiffened raft slab.

The subgrade preparation below any raft slabs will be important in the final performance of the raft. Detailed analysis of a piled raft would be required to estimate the settlements, particularly of the clay layers below, and the contact pressures below the raft. Further discussion regarding sub-grade preparation is provided in Section 4.7 below.

Alternatively, the building may be designed as fully suspended (which is our preferred option) with deep piles founded into Unit 4 shale or better. Piles founded in Unit 4 or Unit 5 shale may be designed with an allowable bearing pressure of 1500kPa or 3500kPa, respectively.

Grout Injected CFA piles are recommended for this site. Due to the collapsible nature of the sands and the presence of groundwater, bored piers are not recommended for this site. For piles founded into shale bedrock, relatively large capacity piling rigs with rock augers and coring buckets will be required if drilling through the shale bedrock. Further advice should be sought from prospective piling contractors who should be provided with a copy of this report.

All piles must be designed in accordance with the Australian Standard AS2159-2009 Piling – Design and installation.

At least the initial stages of footing excavation should be inspected by a geotechnical engineer to ascertain that the recommended foundation material and depth has been reached and to check initial assumptions about foundation conditions and possible variations that may occur between test locations. The need for further inspections can be assessed following the initial visit.

4.7 SUBGRADE PREPARATION

The subgrade preparation below any slab is very important in the final performance of the slab. Following bulk excavations for the proposed basement, Unit 2b sandy clay and/or clayey sand are expected to be exposed at BEL. We therefore recommend that the lower basement floor slab should be designed fully tanked and the design is likely to be controlled by the hydrostatic uplift pressures. However, for construction purposes, the slab will overlie stiff sandy clay, but if a pile rig working platform is proposed, we recommend it be placed as early as possible to reduce disturbance.

Earthworks recommendations provided in this report should be complemented by reference to AS3798.

Our recommendations regarding subgrade perpetration are as follows:

- The subgrade below the basement slab or footing will need to be prepared prior to construction of the slab or footing, but the extent of the preparation, inspection and testing will depend on the footing systems adopted. A more rigorous control will be required where a raft slab is adopted.
- No matter what footing system is adopted, the exposed subgrade will need to be rolled to re-compact the surface sands that will have been loosened by the excavations. The base would also need to be inspected by a geotechnical engineer during the final stages of rolling to assess if any weak areas are present that require additional treatment.
- Where a raft slab is adopted, the geotechnical engineer would also need to carry out a series of Dynamic Cone Penetrometer (DCP) tests to assess the density of the sands. We expect that a capping layer of well graded crushed rock or recycled concrete (maximum particle size limited to 40mm) will be required to achieve adequate compaction of the upper sands. This granular layer will be required below the entire raft slab and would be of about 150mm thick.
- The performance of raft (including piled raft) slabs are also dependent on the whole of the design and construction team being familiar with the sensitivity of the situation. It is essential that any services which have to be placed in the subgrade are carefully positioned and an appropriate construction schedule/sequence is provided to the geotechnical engineer for approval at the planning stage.
- Disturbance of the subgrade must be minimised and kept outside the zone of influence of column or wall loads. A documented Inspection and Test Plan (ITP) should be prepared prior to construction with appropriate "hold" points in the Quality System.

5 RECOMMENDATIONS FOR FURTHER GEOTECHNICAL SERVICES

Below is a summary of the previously recommended additional work that needs to be carried out:

- Groundwater monitoring and pump out test within the installed wells;
- Seepage analysis using computer software such as SEEP/W for estimation of seepage volumes into the excavation;
- Impact assessment of the proposed excavation on the riverbank to the east using SLOPE/W;
- Dilapidation surveys;
- Design of working platforms for construction plant by an experienced and qualified geotechnical engineer;
- Classification of all excavated material transported off site;
- Witnessing installation and proof-testing of anchors.
- Geotechnical inspections of foundations; and
- Ongoing monitoring of groundwater inflows into the bulk excavation;

We recommend that a meeting be held after initial structural design has been completed to confirm that our recommendations have been correctly interpreted. We also recommend a meeting at the commencement of construction to discuss the primary geotechnical issues and inspection requirements.

6 STATEMENT OF LIMITATIONS

This report has been prepared for the exclusive use of Coronation (26 Shepherd Street) Pty Ltd who is the only intended beneficiary of El's work. The scope of the investigation carried out for the purpose of this report is limited to those agreed with Coronation (26 Shepherd Street) Pty Ltd

No other party should rely on the document without the prior written consent of EI, and EI undertakes no duty, or accepts any responsibility or liability, to any third party who purports to rely upon this document without EI's approval.

El has used a degree of care and skill ordinarily exercised in similar investigations by reputable members of the geotechnical industry in Australia as at the date of this document. No other warranty, expressed or implied, is made or intended. Each section of this report must be read in conjunction with the whole of this report, including its appendices and attachments.

The conclusions presented in this report are based on a limited investigation of conditions, with specific sampling and test locations chosen to be as representative as possible under the given circumstances.

El's professional opinions are reasonable and based on its professional judgment, experience, training and results from analytical data. El may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified by El.

EI's professional opinions contained in this document are subject to modification if additional information is obtained through further investigation, observations, or validation testing and analysis during construction. In some cases, further testing and analysis may be required, which may result in a further report with different conclusions.

We draw your attention to the document "Important Information", which is included in **Appendix E** of this report. The statements presented in this document are intended to advise you of what your realistic expectations of this report should be. The document is not intended to reduce the level of responsibility accepted by EI, but rather to ensure that all parties who may rely on this report are aware of the responsibilities each assumes in so doing.

Should you have any queries regarding this report, please do not hesitate to contact EI.

7 **REFERENCES**

AS1170.4:2007, Structural Design Actions, Part 4: Earthquake Actions in Australia, Standards Australia.

AS1726:1993, Geotechnical Site Investigations, Standards Australia.

AS2159:2009, Piling – Design and Installation, Standards Australia.

AS2870:2011, Residential Slabs and Footings, Standards Australia.

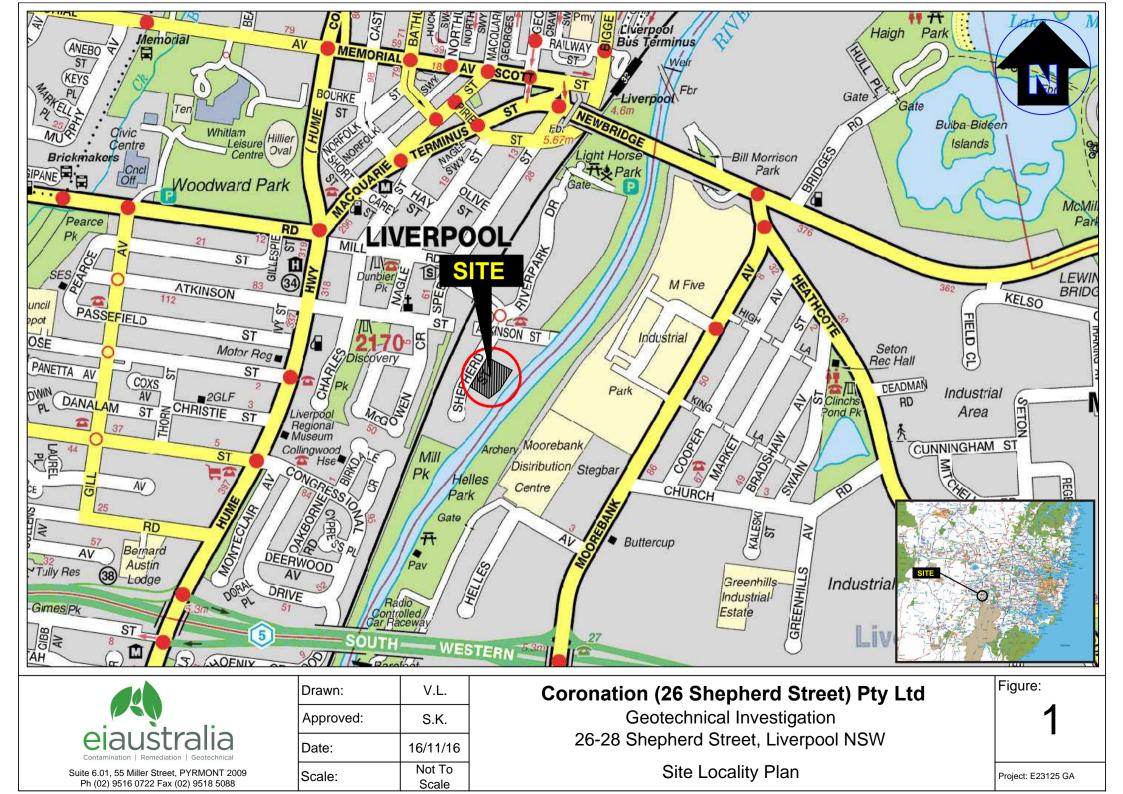
AS3600:2009, Concrete Structures, Standards Australia

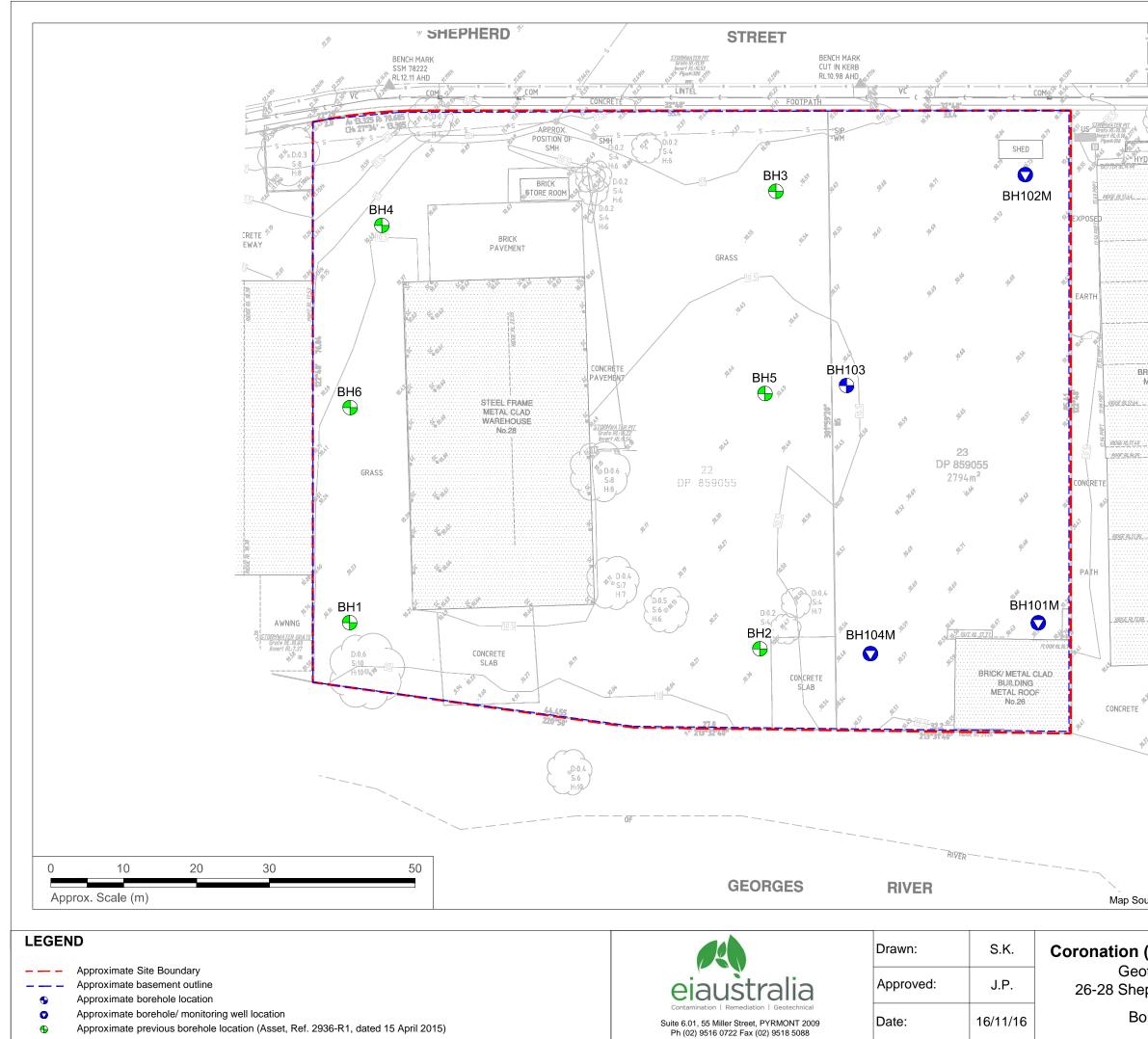
Excavation Work Code of Practice - July 2015 - WorkCover NSW,

NSW Department of Finance and Service, Spatial Information Viewer, maps.six.nsw.gov.au.

NSW Department of Mineral Resources (1983) Sydney 1:100,000 Geological Series Sheet 9130 (Edition 1). Geological Survey of New South Wales, Department of Mineral Resources.

8 ABBREVIATIONS


AHD AS	Australian Height Datum Australian Standard
BEL	Bulk Excavation Level
BEGL	Below Existing Ground Level
BH	Borehole
DBYD	Dial Before You Dig
DP	Deposited Plan
El	El Australia
GI	Geotechnical Investigation
NATA	National Association of Testing Authorities, Australia
PPV	Peak Particle Velocities
PVC	Polyvinyl Chloride
RL	Reduced Level
RMS	Roads and Maritime Services
SMDD	Standard Maximum Dry Density
SPT	Standard Penetration Testing
T-C	Tungsten-Carbide
UCS	Unconfined Compressive Strength



Geotechnical Investigation 26-28 Shepherd Street, Liverpool, NSW Report No.E23125 GA Rev2, 21 December 2016

FIGURES

D:0.3 S:5° H:5		
BRICK FACTORY METAL ROOF No.24		
and the second s		
BITUMEN		
p21		
ource: SDG Land	Development Solution, Ref No. 6683, Dated 12/02/2016	
	``````	

Coronation (26 Shepherd Street) Pty Ltd Geotechnical Investigation 26-28 Shepherd Street, Liverpool NSW

**Borehole Location Plan** 

Figure:

2

Project: E23125 GA

# **APPENDIX A**

BOREHOLE LOGS AND EXPLANATORY NOTES



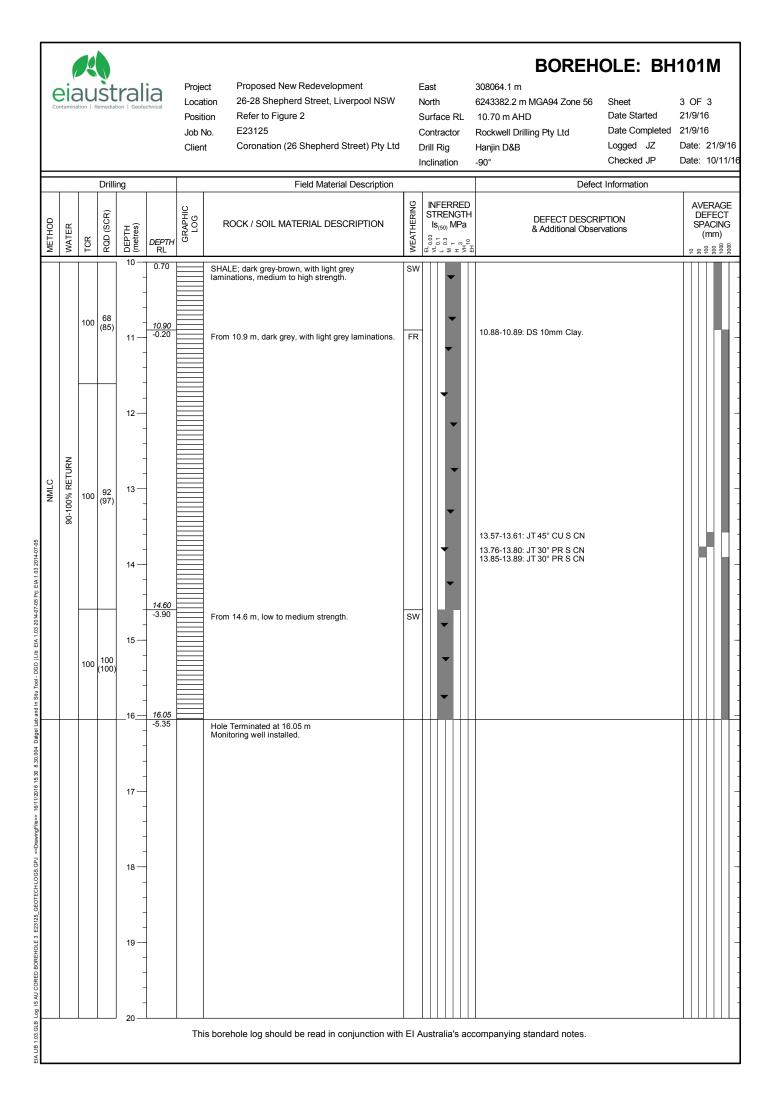


**BOREHOLE: BH101M** 

Project Location Position E23125 Job No. Client

Proposed New Redevelopment 26-28 Shepherd Street, Liverpool NSW Refer to Figure 2

Coronation (26 Shepherd Street) Pty Ltd


308064.1 m 6243382.2 m MGA94 Zone 56 North Surface RL 10.70 m AHD Contractor Rockwell Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

East

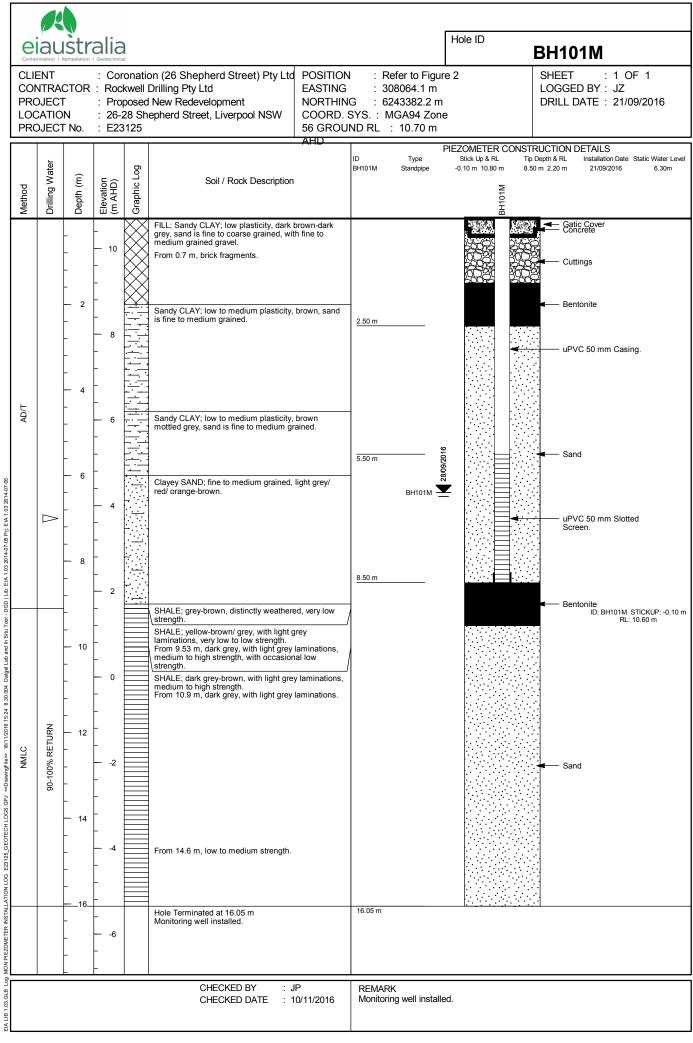
1 OF 3 Sheet 21/9/16 Date Started Date Completed 21/9/16 Logged JZ Date: 21/9/16 Checked JP Date: 10/11/16

AD/T AD/T II 2809/16 II 2809/16	Iling		Sampling				Field Material Desc					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
ADIT				<u>0.70</u> 10.00 <u>2.00</u> 8.70	BH101M_0.2-0.3 ES 0.20-0.30 m 0.20 m PID = 4.6 ppm SPT 0.50-0.70 m 5,5/50mm HB N=5 BH101M_0.5-0.7 BH101M_0.5-0.7 BH101M_0.1.2 ES 1.00-1.20 m PID = 3.6 ppm SPT 1.50-1.95 m 3.2.2 N=4 BH101M_1.5-1.95 BH101M_2.0-2.2 ES 2.00-2.20 m PID = 4.7 ppm SPT 3.00-3.45 m 3,5,7 N=12 BH101M_3.0-3.45 PP = 100-200 kPa			CL-CI	FILL; Sandy CLAY; low plasticity, dark brown-dark grey, sand is fine to coarse grained, with fine to medium grained gravel. From 0.7 m, brick fragments.	M=PI	-	FILL Appears Poorly Compacted
AD/T	E	28/09/16	4	<u>4.50</u> 6.20 6.20 4.70	SPT 4.50-4.95 m 4,5,5 N=10 BH101M_4.5-4.95 ES 4.50-4.95 m BH101M_4.5-4.95 4.50 m PP =150-250 kPa SPT 6.00-6.45 m 6,4,5 N=9 BH101M_6.0-6.45			CL- CI	Sandy CLAY; low to medium plasticity, brown mottled grey, sand is fine to medium grained. Clayey SAND; fine to medium grained, light grey/ red/ orange-brown.	_ M (>PL	St - VSt	
			8-	9.00	SPT 7.50-7.95 m 6,6,12 N=18 BH101M_7.5-7.95 SPT 9.00-9.10 m 25/100mm HB N=SPT				SHALE; grey-brown, distinctly weathered, very low strength.	M	MD	WEATHERED ROCK
			10	-	N=SPT BH101M_9.0-9.1	le lo	g shou	ıld be	e read in conjunction with EI Australia's accompanying sta	andar	d not	tes.

											BORE	HOLE:	BH	10 [,]	1M	
	eia	au	st	ral	ia	Proje Loca			East North		308064.1 m 6243382.2 m MGA94 Zone	56 Sheet		2 OF	= 3	
	Contamina	ation   F	Remediat	ion   Geote	chnical	Posit	ion Refer to Figure 2	5	Surfa	ace RL	10.70 m AHD	Date Star Date Com		21/9/	16	
						Job N Clien			Contr Drill F	ractor Rig	Rockwell Drilling Pty Ltd Hanjin D&B	Logged	JZ	Date	: 21/9	
F								I	nclin	ation	-90°	Checked		Date:	: 10/′	11/16
F			Drilli	ng			Field Material Description					efect Information	1		(55.4	
	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	ls,	ERRED RENGTI (50) MPa	& Additional (	SCRIPTION Observations		S	VERA DEFEC PACIN (mm)	CT NG )
F				0										5 - I	<u> </u>	
				-	-											1
				-	-											
				1 —	-											-
				-	-											-
				-												
				2—												-
				-	-											
				-	-											-
				3-	-											-
				-	-											-
				-	-											-
				- 4	-											-
				-	-											-
				-	-											-
				-	-											-
				5	-											
				-												
				-	-											-
				6—	-											-
				-	-											-
				-	-											
				7—	-											-
				-												-
				-	-											-
				8	-											-
				-	-											
				-	-											-
				9			Continuation from non-cored borehole									
	TURN			-	1.60		SHALE; yellow-brown/ grey, with light grey laminations, very low to low strength.	DW	-		9.13-9.14: DS 10mm Clay. 9.19-9.20: SZ 10 mm 9.33-9.40: JT 70° CU S CN					
0.00	90-100% RETURN	100	68 (85)	-	9.53 1.17 10.00		From 9.53 m, dark grey, with light grey laminations, medium to high strength, with occasional low strength.	sw		-	9.49-9.53: DS 40mm 9.62: JT 5° CU S CN 9.64-9.65: DS 10mm Clay. 9.74: BP 0° PR S Clay VNR					-
				10 —		Th	is borehole log should be read in conjunction wit	h El A	ustr	alia's a		i.				
L																






# CORE PHOTOGRAPH OF BOREHOLE: BH101M

Project:	Proposed Mixed Use Redevelopment
Location:	26-28 Shepherd Street, Liverpool NSW
Position:	Refer to Figure 2
Job No. :	E23125
Client:	Coronation (26 Shepherd St) Pty Ltd

Surface RL:	10.70 m AHD
East:	308064.1 m
North:	6243382.2 m MGA94 Zone
Inclination:	56 -90°
Box:	1-2 of 2
Hole Depth:	16.05 m

Depth Range:	9.09 m to 16.05 m
Contractor:	Rockwell Drilling Pty Ltd
Drill Rig:	Hanjin DB8
LOGGED: JZ	DATE: 21/9/16
CHECKED: JP	DATE: 10/11/16





DGM03 RL orm Number:



BOREHOLE: BH102M

Project Location

26-28 Shepherd Street, Liverpool NSW

Proposed New Redevelopment

Position Job No.

Refer to Figure 2 E23125

Coronation (26 Shepherd Street) Pty Ltd Client

308019.6 m 6243411.2 m MGA94 Zone 56 Surface RL 10.70 m AHD Contractor Rockwell Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°

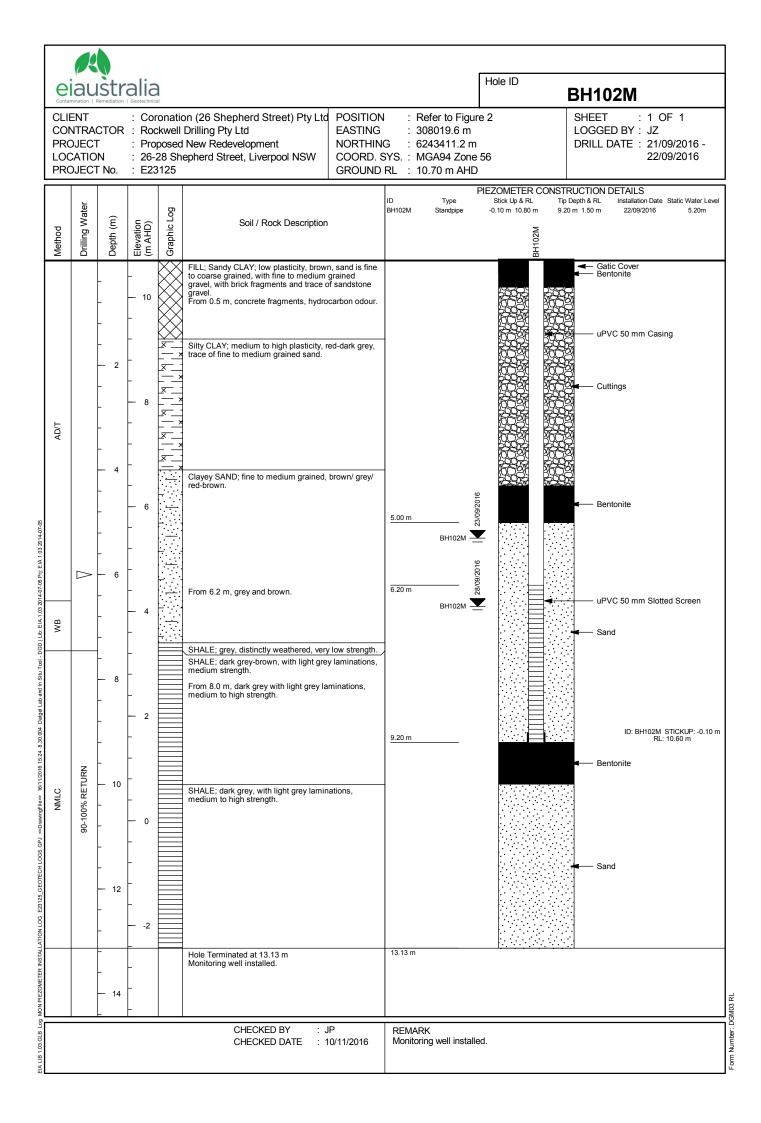
East

North

1 OF 3 Sheet Date Started 21/9/16 22/9/16 Date Completed Logged JZ Date: 22/9/16 Checked JP Date: 10/11/16

			Dril	ling		Sampling				Field Material Desc				
METHOD	PENETRATION	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
E23125_GEOTECH LOGS GPJ <-DrawingFile> 16/11/2016 15/29 8.30.004 Daged Lab and In Siu/Tool - DGD   Lb: EI A 1.03 2014/07/05 Pi; EI A 1.03 2014/07/05 M AD/T WB AD/T					<u>DEPTH</u> 10.70 0.50 10.20 9.20 9.20 6.70 6.70 7.30 7.30 7.45	BH102M_0.2-0.3 ES 0.20-0.30 m PID = 3.3 ppm SPT 0.50 m 1/0mm HB BH102M_0.5-0.6 ES 0.50-0.60 m PID = 7.7 ppm BH102M_0.8-1.0 ES 0.80-1.00 m BH102M_1.2-1.3 ES 1.20-1.30 m PID = 15.8 ppm SPT 1.50-1.95 m 3,7,8 N=15 BH102M_1.5-1.95 1.50 m PP = 250-300 kPa BH102M_2.5-2.6 ES 2.50-2.60 m PID = 5.9 ppm BH102M_2.5-2.6 ES 2.90-3.00 m SPT 3.00-3.45 m 3,5,6 N=11 BH102M_3.0-3.45 3.00 m PP = 300-350 kPa BH102M_3.9-4.0 ES 3.90-4.00 m BH102M_4.4-4.5 ES 4.40-4.50 m PID = 9.6 ppm SPT 4.50-4.95 m 5,10,10 N=20 BH102M_4.9-5.0 ES 4.90-5.00 m BH102M_4.9-5.0 ES 5.80-6.00 m SPT 6.00-6.45 m 5,11,22 N=33 BH102M_6.0-6.2 ES 6.00-6.20 m BH102M_6.0-6.45			SSU - CCH SC -	FILL; Sandy CLAY; low plasticity, brown, sand is fine to coarse grained, with fine to medium grained gravel, with brick fragments and trace of sandstone gravel.         From 0.5 m, concrete fragments, hydrocarbon odour.         Silty CLAY; medium to high plasticity, red-dark grey, trace of fine to medium grained sand.         Clayey SAND; fine to medium grained, brown/ grey/red-brown.         From 6.2 m, grey and brown.         SHALE; grey, distinctly weathered, very low strength.         Continued as Cored Borehole	MICO M ( <pl< td=""><td>, VSt</td><td>FILL Appears Poorly Compacted ALLUVIUM</td><td></td></pl<>	, VSt	FILL Appears Poorly Compacted ALLUVIUM	
				- - 10 —	-	This borehol	e lo	g shou	ıld b	e read in conjunction with EI Australia's accompanying sta	anda	rd not	les.	

		1	2									BOREHO	OLE: BH	10	2M	
	Conta	ia minat	JU		ion   Geote		Proje Loca Posit Job N	tion 26-28 Shepherd Street, Liverpool NSW ion Refer to Figure 2	1	East North Surface Contrac		308019.6 m 6243411.2 m MGA94 Zone 56 10.70 m AHD Rockwell Drilling Pty Ltd	Sheet Date Started Date Completed	2 O 21/9 22/9	/16	
							Clien		I	Drill Rig Inclinati	J	Hanjin D&B -90°	Logged JZ Checked JP	Date	e: 22/9 e: 10/1	
F				Drilli	ng			Field Material Description				Defect	Information			_
		WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING		NGTH MPa	DEFECT DESCRIF & Additional Observ	PTION	5	VERAG DEFEC SPACIN (mm)	T IG
		90-100% RETURN	100	75 (95)		7.45 3.25 8.00 2.70	Th	Continuation from non-cored borehole SHALE; dark grey-brown, with light grey laminations, medium strength. From 8.0 m, dark grey with light grey laminations, medium to high strength.	DW SW FR	-		7.51: BP 0° PR S CN 7.78: JT 5° UN S CN 7.78: BP 0° PR S CN 9.09: BP 0° PR S CN				
EIA LIB 1.03.GLB					10-		Th	is borehole log should be read in conjunction with	n El A	Australia	a's acc	companying standard notes.				


											BOREH	OLE: BH	10	2M
	ei			tion   Geote		Proje Loca Posit Job N Clien	tion 26-28 Shepherd Street, Liverpool NSW ion Refer to Figure 2 No. E23125	1 S (		ce RL actor	308019.6 m 6243411.2 m MGA94 Zone 56 10.70 m AHD Rockwell Drilling Pty Ltd Hanjin D&B	Sheet Date Started Date Completed Logged JZ		/16
										ation	-90°	Checked JP	Date	: 10/11/16
	_	_	Drilli	ng	1		Field Material Description				Defec	t Information		
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	<i>DEPTH</i> RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	STI Is	ERRED RENGTH	& Additional Obser	PTION vations	5	VERAGE DEFECT PACING (mm)
EA LIB 103 GLB Log IS AU CORED BOREHOLE 3 23125_GEOTECHLOGS GPJ <-CDawingFile>> 16/11/2016 18:30 8:30.004 Dage Lab and In Situ Tool - DGD [LIb; EIA 1:03 20/4-07:45 Prj; EIA 1:03	90-100% RETURN		100 (99)	10	0.70		SHALE: dark grey, with light grey laminations, medium to high strength.	FR			10.55: BP 0° PR S CN 10.92-10.94: JT 90° UN S CN			
EIA LIB 1.03.GLB				20		Th	is borehole log should be read in conjunction with	ELA	ustr	alia's ac	companying standard notes.			



# CORE PHOTOGRAPH OF BOREHOLE: BH102M

Contamination   Remed	lation   Geotechnical				
Project:	Proposed Mixed Use Redevelopment	Surface RL:	10.70 m AHD	Depth Range:	7.45 m to 13.13 m
Location:	26-28 Shepherd Street, Liverpool NSW	East:	308019.6 m	Contractor:	Rockwell Drilling Pty Ltd
Position:	Refer to Figure 2	North:	6243411.2 m MGA94 Zone 56	Drill Rig:	Hanjin DB8
Job No. :	E23125	Inclination:	-90°	LOGGED: JZ	DATE: 22/9/16
Client:	Coronation (26 Shepherd St) Pty Ltd	Box:	1-2 of 2	CHECKED: JP	DATE: 10/11/16
		Hole Depth:	13.13 m		







Client

ProjectProposed New RedevelopmentLocation26-28 Shepherd Street, Liverpool NSWPositionRefer to Figure 2Job No.E23125

Coronation (26 Shepherd Street) Pty Ltd

East 308029.3 m North 6243377.8 n Surface RL 10.50 m AHI Contractor Rockwell Dri Drill Rig Hanjin D&B

Inclination

6243377.8 m MGA94 Zone 56 10.50 m AHD Rockwell Drilling Pty Ltd Hanjin D&B -90° 
 Sheet
 1 OF 3

 Date Started
 22/9/16

 Date Completed
 22/9/16

 Logged JZ
 Date: 22/9/16

 Checked JP
 Date: 10/11/16

		Dril	ling		Sampling				Field Material Desc				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
AD/T			0 — - - 1 —	10.50	BH103_0.2-0.3 ES 0.20-0.30 m PID = 2.9 ppm			-	FILL; Gravelly SAND; fine to medium grained, dark grey/ dark brown/ red, fine to coarse, angular to sub-angular gravel, with clay and brick fragments.			FILL Appears Poorly Compacted	
	WB M GW not observed due to rotary drilling		2.30						м	-			
		- - 3 - -	8.20	SPT 2.50-2.95 m 4,3,3 N=6 BH103_2.5-2.9 ES 2.50-2.90 m PID = 1.7 ppm BH103_2.5-2.95 PP =50-150 kPa			CL- CI	Sandy CLAY; low to medium plasticity, red-brown/ grey, sand is fine to medium grained.			ALLUVIUM		
WB		4 — - - 5 — -	<u>4.20</u> 6.30	SPT 4.00-4.45 m 5,8,10 N=18 BH103_4.0-4.45 PP =100-200 kPa				From 4.2 m, grey.	M (>PL	F - St			
			- - 6 - -	<u>5.50</u> 5.00	SPT 5.50-5.95 m 6.8,11 N=19 BH103_5.5-5.95			SC	Clayey SAND; fine to medium grained, brown.	м	MD		
			7—   8—	8.00 8.12	SPT 7.00-7.45 m 13,15,13 N=28 BH103_7.0-7.45			_	SHALE; dark grey, distinctly weathered, very low strength.	-	-	WEATHERED ROCK	
			- - 9 -						Continued as Cored Borehole				
			- - 10—		This boreho	DIE log	shou	ld be	e read in conjunction with EI Australia's accompanying sta	Indai	d not	ies.	

# BOREHOLE: BH103

											BORE	HOLE:	BH1	03
	eia	AU tion   F	St	ion   Geote	ia	Proje Loca Posit Job N	tion 26-28 Shepherd Street, Liverpool NSW ion Refer to Figure 2 No. E23125	ו נ	East North Surface Contrac	ctor	308029.3 m 6243377.8 m MGA94 Zone 56 10.50 m AHD Rockwell Drilling Pty Ltd	Sheet Date Started Date Complete	2 OF 22/9/ d 22/9/	: 3 16
						Clien	t Coronation (26 Shepherd Street) Pty Ltd		Drill Rig nclinati		Hanjin D&B -90°	Logged JZ Checked JP		22/9/16 10/11/16
F			Drilli	ng			Field Material Description				Defect	Information		
METHOD	WATER	TCR	RQD (SCR)	OEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION			RRED NGTH MPa	& Additional Obser		SI	/ERAGE EFECT PACING (mm)
		100	71 (88)		<u>8.12</u> 2.38		Continuation from non-cored borehole SHALE; yellow-brown/ grey, with light grey laminations, very low to low strength. From 9.5 m, medium strength.	DW SW	wustrali	a's act	8.62-8.66: DS 40 mm, CLAY 8.70: JT 5° UN S CN 8.72-8.80: DS 80 mm 8.95: BP 0° PR S CN 9.18: BP 0° PR S CN 9.36: BP 0° PR S CN 9.46: BP 0° PR S CN			
EIA LIB 1.0								17						

	eia	au	St	tion   Geot	echnical	Proje Loca Posit Job I Clier	tion 26-28 Shepherd Street, Liverpool NSW ion Refer to Figure 2 No. E23125	N S C	Contr Drill F	ce RL actor Rig	BORE 308029.3 m 6243377.8 m MGA94 Zone 56 10.50 m AHD Rockwell Drilling Pty Ltd Hanjin D&B -90°	HOLE: E Sheet Date Started Date Completed Logged JZ Checked JP	3 OI 22/9/ 22/9/ Date	F 3 116
	_	_	Drill	ing			Field Material Description				Defec	t Information	_	
METHOD	WATER	TCR	RQD (SCR)	DEPTH (metres)	DEPTH RL	GRAPHIC LOG	ROCK / SOIL MATERIAL DESCRIPTION	WEATHERING	ls ₍	ERRED RENGTH	DEFECT DESCRI & Additional Obser	PTION vations	S	VERAGE DEFECT PACING (mm)
EM LIB 103 GLB Log IS AU CORED BOREHOLE 3 E23125_GEOTECHLOGS GPJ <-CDrawingFile>> 16/11/2016 18:30 8.30.004 Dargel Lab and in Situ Tool- DGD  Lib: EIA 1.03 2014-07-05 Prj; EIA 1.03 2014-07-05 M/ C		100	100	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	0.50		SHALE: dark grey, with light grey laminations, medium to high strength.	SW			10.54: BP 0° PR S CN			
EIA LIB 1.03.GLB L	1		<i>x</i>	20-	1	Th	is borehole log should be read in conjunction with	EIA	ustra	alia's acc	, companying standard notes.			



# **CORE PHOTOGRAPH OF BOREHOLE: BH103**

Project:	Proposed Mixed Use Redevelopment
Location:	26-28 Shepherd Street, Liverpool NSW
Position:	Refer to Figure 2
Job No. :	E23125
Client:	Coronation (26 Shepherd St) Pty Ltd

 Surface RL:
 10.50 m AHD

 East:
 308029.3 m

 North:
 6243377.8 m MGA94 Zone 56

 Inclination:
 -90°

 Box:
 1-2 of 2

 Hole Depth:
 16.25 m

Depth Range:	8.12 m to 16.25 m
Contractor:	Rockwell Drilling Pty Ltd
Drill Rig:	Hanjin DB8
LOGGED: JZ	DATE: 22/9/16
CHECKED: JP	DATE: 10/11/16





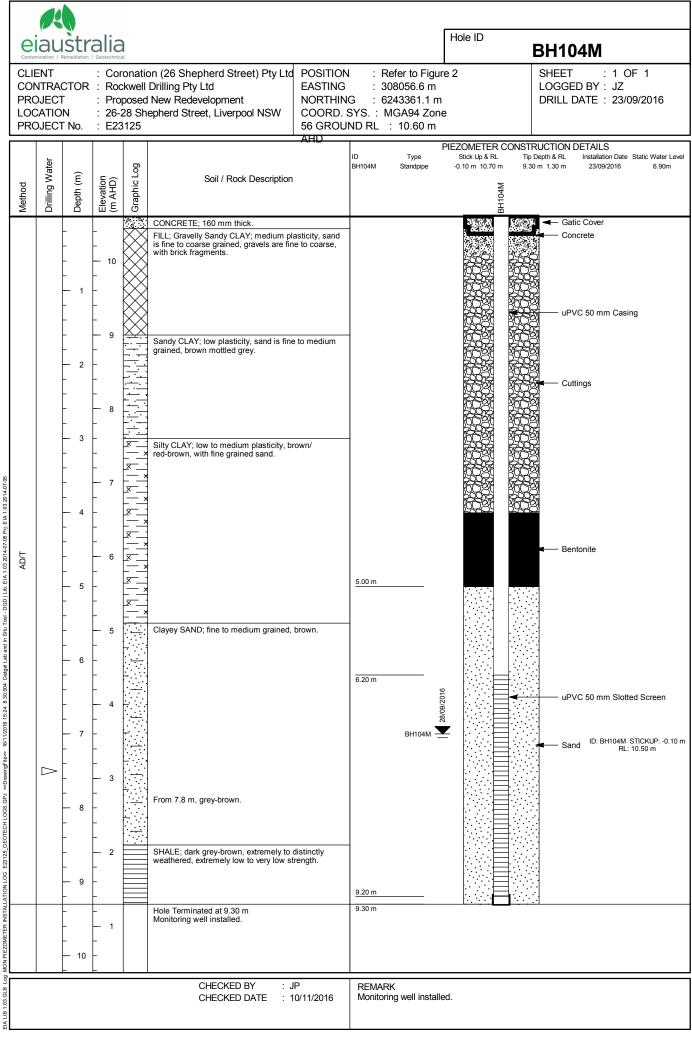
**BOREHOLE: BH104M** 

Project Location Position E23125 Job No. Client

Proposed New Redevelopment 26-28 Shepherd Street, Liverpool NSW Refer to Figure 2

Coronation (26 Shepherd Street) Pty Ltd

308056.6 m 6243361.1 m MGA94 Zone 56 Surface RL 10.60 m AHD Contractor Rockwell Drilling Pty Ltd Drill Rig Hanjin D&B Inclination -90°


East

North

1 OF 1 Sheet 23/9/16 Date Started Date Completed Logged JZ Checked JP

23/9/16 Date: 23/9/16 Date: 10/11/16

_		Dri	ling		Sampling	_			Field Material Desc			1
	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	<b>USCS SYMBOL</b>	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
			0 —	0.16			· A	-	CONCRETE; 160 mm thick.	-	-	CONCRETE HARDSTAND
			-	10.44	BH104M_0.2-0.3 ES 0.20-0.30 m PID = 2 ppm		$\bigotimes$	-	FILL; Gravelly Sandy CLAY; medium plasticity, sand is fine to coarse grained, gravels are fine to coarse, with brick fragments.			FILL Appears Poorly Compacted
			- 1—	-	BH104M_0.7-1.0 ES 0.70-1.00 m		$\bigotimes$			M (>PL	) -	
			-	1.60	BH104M_1.2-1.5 ES 1.20-1.50 m		$\bigotimes$					
			- 2—	9.00	BH104M_1.7-1.8 ES 1.70-1.80 m BH104M_1.8-2.0 ES			CL	Sandy CLAY; low plasticity, sand is fine to medium grained, brown mottled grey.			ALLUVIUM
					1.80-2.00 m					M (>PL	) -	
			-		BH104M_2.5-2.6 ES 2.50-2.60 m PID = 4.4 ppm BH104M 2.8-3.0 ES							
			3—	3.00 7.60	2.80-3.00 m			CL- CI	Silty CLAY: low to medium plasticity, brown/ red-brown, with fine grained sand.			
			-	-	BH104M_3.5-3.6 ES 3.50-3.60 m PID = 3.3 ppm BH104M_3.8-4.0 ES							
	_		4-		BH104M_3.8-4.0 ES 3.80-4.00 m		 					
	E		-	-						-	-	
•			- 5 —	-	BH104M_4.8-5.0 ES 4.80-5.00 m		×     ×  . ×					
			-	5.50			× - ×					
			- - 6—	5.10	BH104M_5.8-6.0 ES 5.80-6.00 m		·	SC	Clayey SAND; fine to medium grained, brown.			
			-	-								
		28/09/16	-	-	BH104M 6.8-7.0 ES							
		-	7—	-	6.80-7.00 m					-	-	
		$\square$	-	7.80								
			8—	2.80	BH104M_7.8-8.0 ES 7.80-8.00 m				From 7.8 m, grey-brown.			
			-	<b>8.50</b> 2.10	BH104M_8.5-9.0 ES 8.50-9.00 m			-	SHALE; dark grey-brown, extremely to distinctly weathered, extremely low to very low strength.			WEATHERED ROCK
	F-H		- 9—	-	BH104M_9.0-9.3 D 9.00-9.30 m					-	-	
			-	9.30	5.00-5.30 m				Hole Terminated at 9.30 m Monitoring well installed.			
			- 10 —	-								
					This borehol	le lo	g shou	ld b	e read in conjunction with EI Australia's accompanying st	andaı	d not	les.



orm Number: DGM03 RL



### **EXPLAINATION OF NOTES, ABBREVIATIONS & TERMS USED ON BOREHOLE AND TEST PIT LOGS**

### DRILLING/EXCAVATION METHOD

НА	Hand Auger	RD	Rotary blade or drag bit	NQ	Diamond Core - 47 mm
DTC	Diatube Coring	RT	Rotary Tricone bit	NMLC	Diamond Core - 52 mm
NDD	Non-destructive digging	RAB	Rotary Air Blast	HQ	Diamond Core - 63 mm
AS*	Auger Screwing	RC	Reverse Circulation	HMLC	Diamond Core - 63 mm
AD*	Auger Drilling	РТ	Push Tube	BH	Tractor Mounted Backhoe
*V	V-Bit	СТ	Cable Tool Rig	EX	Tracked Hydraulic Excavator
*T	TC-Bit, e.g. AD/T	JET	Jetting	EE	Existing Excavation
ADH	Hollow Auger	WB	Washbore or Bailer	HAND	Excavated by Hand Methods

#### PENETRATION RESISTANCE

Low Resistance L

н

**Medium Resistance** Μ

Rapid penetration/ excavation possible with little effort from equipment used.

Penetration/ excavation possible at an acceptable rate with moderate effort from equipment used.

**High Resistance** Penetration/ excavation is possible but at a slow rate and requires significant effort from

equipment used.

#### **Refusal/Practical Refusal** R

No further progress possible without risk of damage or unacceptable wear to equipment used. These assessments are subjective and are dependent on many factors, including equipment power and weight, condition of excavation or drilling tools and experience of the operator.

¥	Water level at date	shown	<	Partial water loss				
$\triangleright$	Water inflow			Complete Water Loss				
GWNE	due to drilling water,	, surface seepage or cave-in of the b	orehole/ test p					
GWNO				dry soon after excavation. However, e been observed had the borehole/ test pit				
SAMPLING AND T	ESTING							
<b>PT</b> 7,11 N=18 seating /80mm V V 8	4,7,11 = Blows pe Where practical re Penetration occur	efusal occurs, the blows and penetral rred under the rod weight only rred under the hammer and rod weigh	ion for that inte					
ampling								
5 DS S S	Disturbed Sample Bulk disturbed Sa Gas Sample Water Sample							
⁶³ .	Thin walled tube s	sample - number indicates nominal s	ample diamete	r in millimetres				
esting /S D M PT CP	Field Vane Shear Photoionisation D Pressuremeter tes		Ū (	peak value, sr= residual value)				
PT PTu	Static Cone Pene Static Cone Pene	tration test tration test with pore pressure (u) me	asurement					
ROCK CORE REC	OVERY							
TCR=Total C	Core Recovery	SCR=Solid Core Recover	y (%)	RQD = Rock Quality Designation (%)				
$=\frac{Length of cor}{Length of}$	e recovered core run × 100	$=\frac{\sum Length of cylindrical core reconcilente}{Length of core run}$	overed × 100	$=\frac{\sum Axial \ lengths \ of \ core > 100mm}{Length \ of \ core \ run} \times 100$				

= Inferred Boundary

- - - - - - = Probable Boundary

-?-?-?-?-= Possible Boundary

eiau	A Stral	ia chnical		USED O			SOIL DESCR AND TEST PI	-
	FILL		.uuu.	ANIC SO OH or Pt)			CLAY (CL, (	CI or CH)
	BOUL	BLES or _DERS	***** ***** SILT	(ML or M	H)		SAND (SP c	or SW)
လို့ လို့လို့	GRA\ GW)	/EL (GP or	Combinations of sandy clay	these basic s	ymbols may b	e used to in	ndicate mixed mater	ials such as
Soil is broadl	y classifie	d and described in	STRATIGRAPHY Borehole and Test Pit I aterial properties are as	Logs using th sessed in the	e preferred m field by visua	ethod giver I/tactile me	ı in AS1726 – 1993, thods.	(Amdt1 –
PARTICLE	SIZE CH	IARACTERISTI	CS	USCS SY	MBOLS			
Major Divi	sion	Sub Division	Particle Size	Major D	ivisions	Symbol	Descrip	
	BOULDE	ERS	>200 mm	ے پ	of Te	GW	Well graded grav	
	COBBL	ES	63 to 200 mm	<b>s</b> Iess 75m	More than 50% of coarse grains are >2.mm	GP	sand mixtures, little or no fines. Poorly graded gravel and grave	
		Coarse	20 to 63 mm	Soll ass 0.0	an ( grai 2.mr	-	sand mixtures, lit Silty gravel, gra	
GRAVE	L	Medium	6 to 20 mm	ED (Iry m	arse	GM	mixtur	es.
		Fine	2 to 6 mm	<b>RAIN</b> by d	Mo coa	GC	Clayey gravel, gra mixtur	es.
Coarse SAND Medium			0.6 to 2 mm 0.2 to 0.6 mm	COARSE GRAINED SOILS More than 50% by dry mass less than 63mm is greater than 0.075mm	More than 50% of coarse grains are <2 mm	SW	Well graded sand sand, little or	
Fine			0.075 to 0.2mm	AR: thar mm	an 5 e gr 2 mi	SP	Poorly graded sar sand, little or	
	SILT	-	0.002 to 0.075 mm	n 63	re th oars re <	SM	Silty sand, sand	-silt mixtures.
	CLA		<0.002 to 0.075 mm	tha	Mo of c a	SC	Clayey sand, mixtur	
	PLAS			<b>.S</b> nass than		ML	Inorganic silts of very fine sands, i	low plasticity, ock flour, silty
l, percent	40			FINE GRAINED SOILS More than 50% by dry mass ess than 63mm is less than 0.075mm	Liquid Limit less < 50%	CL	or clayey fir Inorganic clays of plasticity, gravell clays, silty	low to medium y clays, sandy
ex (Ip	20 10 CL-M	CL CI		FINE GRAINED ore than 50% by ss than 63mm is 0.075mm	Liqu	OL	Organic silts and clays of low	d organic silty
IONI	20		он	thar than	<del>ت</del> ^ ح	MH	Inorganic silts of	high plasticity.
TICITY	10 CL-M	OL or	MH MH	<b>FIN</b> More less t	Liquid Limit > than 50%	CH OH	Inorganic clays of high plasticity. Organic clays of medium to high plasticity.	
PLAST	0 20	30 40 50	60 70			PT	Peat muck and	other highly
MOISTUDI		LIQUID LIMIT (WL), I	parcant			••	organic	soils.
MOISTURI Symbol	Term	Description						
D	Dry		Is are free flowing. Clay	ys & Silts may	y be brittle or	friable and	powdery.	
M	Moist		han in the dry condition					
W	Wet		water. Sands and grave					
		ohesive soils may than, « much less	also be described in rela than].	ation to plasti	c limit (WP) o	r liquid limit	(WL) [» much great	er than,
CONSISTEN	ICY	1		ENSITY		·		
Symbol	Term		Shear Strength	Symbol	Term		Density Index %	SPT "N" #
VS S	Very So Soft		12 kPa	VL L	Very Loose	se	< 15 15 to 35	0 to 4 4 to 10
F	Firm	25 to	50 kPa	MD	Medium De	nsity	35 to 65	10 to 30
St VSt	Stiff Very Sti		100 kPa	D VD	Dense Very Den	se	65 to 85 Above 85	30 to 50 Above 50
H In the absend	Hard ce of test r	Above esults, consistenc	200 kPa	ssessed from	correlations v	vith the obs	erved behaviour of t	he material.
# SPT correla			26 – 1993, and may be		mections for (	verburden	pressure and equipr	пепі туре.
Term		nent Guide				Pro	portion by Mass	
Trace	Presence	e just detectable b	y feel or eye but soil pro operties of primary com			Coarse	e grained soils: $\leq 5\%$	)
Some	Presence	e easily detectable	by feel or eye but soil properties of primary com	properties little	Fine grained soil: ≤15% Coarse grained soils: 5 - 12% Fine grained soil: 15 - 30%			



### **TERMS FOR ROCK MATERIAL STRENGTH** AND WEATHERING

#### **CLASSIFICATION AND INFERRED STRATIGRAPHY**

Soil is broadly classified and described in Borehole and Test Pit Logs using the preferred method given in AS1726 - 1993, (Amdt1 - 1994 and Amdt2 - 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

STRENGTH	
----------	--

••••••										
Symbol Term		Point Load Index, Is ₍₅₀₎ (MPa) [#]	Field Guide							
EL	Extremely Low	< 0.03	Easily remoulded by hand to a material with soil properties.							
VL	Very Low	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30 mm can be broken by finger pressure.							
L	Low	0.1 to 0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.							
М	Medium	0.3 to 1	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.							
н	High	1 to 3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken with pick with a single firm blow; rock rings under hammer.							
VH	Very High	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.							
EH	Extremely High	>10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.							
[#] Rock St	rength Test Res	ults 🖵	Point Load Strength Index, Is ₍₅₀₎ , Axial test (MPa)							

Rock Strength Test Results

Point Load Strength Index, Is₍₅₀₎, Axial test (MPa)

Point Load Strength Index, Is(50), Diametral test (MPa)

Relationship between rock strength test result ( $Is_{(50)}$ ) and unconfined compressive strength (UCS) will vary with rock type and strength, and should be determined on a site-specific basis. UCS is typically 10 to 30 x Is(50), but can be as low as 5 MPa.

### **ROCK MATERIAL WEATHERING**

Sym	bol	Term	Field Guide						
RS	i	Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.						
EW		Extremely Weathered	Rock is weathered to such an extent that it has soil properties - i.e. it either disintegrates or can be remoulded, in water.						
DW	HW		Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores. In some environments it is convenient to subdivide into Highly Weathered and Moderately Weathered, with the degree of alteration typically less for MW.						
	MW	Distinctly Weathered							
sw	1	Slightly Weathered	Rock slightly discoloured but shows little or no change of strength relative to fresh rock.						
FR		Fresh	Rock shows no sign of decomposition or staining.						



### ABBREVIATIONS AND DESCRIPTIONS FOR ROCK MATERIAL AND DEFECTS

#### CLASSIFICATION AND INFERRED STRATIGRAPHY

Rock is broadly classified and described in Borehole Logs using the preferred method given in AS1726 – 1993, (Amdt1 – 1994 and Amdt2 – 1994), Appendix A. Material properties are assessed in the field by visual/ tactile methods.

					200000							
Layering					Stru	cture						
Term		Descr	intion		Term				Spacing (mm)			
Term		Descr	iption		-		in a ta d		Spacing (mm) <6			
Massive		No lay	ering apparent			•	inated					
		<u> </u>				nated		6 - 20				
Poorly Devel	oped	proper	ng just visible; litt	le effect on		y bed	/ bedded		20 - 60 60 - 200			
		· · ·		<i></i>			edded		200 - 600			
Well Develop	od		ng (bedding, folia t; rock breaks mo			din be			600 - 2,000			
	Jeu		el to layering	bie easily		<u> </u>	ly bedded		> 2,000			
						UNCK	iy bedded		> 2,000			
Defect Type		Abbr.	Description									
Joint		JT	Surface of a fra	ength. May be c					ross which the rock has little or rock substance, which			
Bedding Parting		BP	Surface of fractors sub-parallel to la	acts as cement. Surface of fracture or parting, across which the rock has little or no tensile strength, parallel or sub-parallel to layering/ bedding. Bedding refers to the layering or stratification of a rock, indicating orientation during deposition, resulting in planar anisotropy in the rock material.								
Foliation		FL	Repetitive plana	ar structure para	llel to th	ne she	ear direction	or perpe	endicular to the direction of (SH) and Gneissosity.			
Contact		CO	The surface bet	he surface between two types or ages of rock.								
Cleavage		CL		Cleavage planes appear as parallel, closely spaced and planar surfaces resulting from nechanical fracturing of rock through deformation or metamorphism, independent of bedding.								
Sheared Seam/ Zone (Fault)		SS/SZ							ock substance cut by closely ed joints or cleavage planes			
Crushed Seam/ Zone (Fault)		CS/CZ	with roughly par		r bound	aries.			ts of the host rock substance ments may be of clay, silt,			
Decompose Seam/ Zone		DS/DZ	Seam of soil su material in place	bstance, often w es.	ith grac	lation	al boundarie	s, forme	ed by weathering of the rock			
Infilled Seam	า	IS	Seam of soil substance, usually clay or clayey, with very distinct roughly parallel boundaries, formed by soil migrating into joint or open cavity.									
Schistocity		SH	The foliation in schist or other coarse grained crystalline rock due to the parallel arrangement of platy or prismatic mineral grains, such as mica.									
Vein		VN	Distinct sheet-like body of minerals crystallised within rock through typically open-space filling or crack-seal growth.									
ABBREVIAT	IONS A	ND DES	CRIPTIONS FO	R DEFECT SHA	PE AN	D RO	UGHNESS					
Shape	Abbr.	Descri	ption	Roughness	Abbr.	Des	cription					
Planar	PI	Consis	stent orientation	Polished	Pol	Shir	ny smooth su	rface				
Curved	Cu	Gradu orienta	al change in ation	Slickensided	SL	Groo	oved or striat	ted surfa	ace, usually polished			
Undulating	Un	Wavy	surface	Smooth	S	Smc	both to touch	. Few or	no surface irregularities			
Stepped	St	define	r more well d steps	Rough	RF	<1m	m). Feels lik	e fine to	ularities (amplitude generall			
Irregular	lr	in orie	sharp changes ntation	Very Rough	VR	>1m	m. Feels like	e very co	ularities, amplitude generally parse sandpaper			
Drientation:			cal Boreholes – ned Boreholes –						the core axis.			
ABBREVIATI	ONS A	ND DES	CRIPTIONS FOR	R DEFECT COA	TING	Ī	DEFECT A	PERTUR	RE			
Coating	Abbr.	Descrip	otion				Aperture	Abbr.	Description			
Clean	CN	No visib	le coating or infill	ing			Closed	CL	Closed.			
Stain	SN	No visib	le coating but sur , often limonite (o	faces are discol	oured b	у	Open	0	Without any infill material.			
Veneer			e coating of soil of		nce, us	ually	Infilled		Soil or rock i.e. clay, talc, pyrite, quartz, etc.			

Geotechnical Investigation 26-28 Shepherd Street, Liverpool, NSW Report No.E23125 GA Rev2, 21 December 2016

# APPENDIX B

LABORATORY CERTIFICATES



	I	POINT LO	AD STRE	NGTH	INDE)	K R	EPOR	T	
Client:	El Australia Pty Ltd			Moisture Content Condition:	As Receive	ed			
Address:	Suite 6.01, 55 Miller S	street, Pyrmont, NSV	V 2009	Storage History:	Core Box				
Project:	26-28 Shepherd St, L	iverpool (E23125)		Report No:	S18300-PL				
Job No:	S16426			Date Tested:	20.10.16				
Test Proc	edure:	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling						Date	Sampled:		21.09.16
Preparatio	on: Prepared in	accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
S18300	BH101 9.60m	Shale	Diametral	-	49.0	0.21	0.09	0.09	
510500	BHIOI S.COM	Share	Axial	52.0	28.0	2.71	1.46	1.37	
S18301	BH101 10.20m	Shale	Diametral	-	50.0	0.53	0.21	0.21	
318201	BH101 10.2011	Sildle	Axial	52.0	40.0	1.85	0.70	0.71	
640202	DU404.40.75	Chala	Diametral	-	50.0	0.55	0.22	0.22	
S18302	BH101 10.75m	Shale	Axial	52.0	34.0	1.98	0.88	0.86	
640202	DU404.44.45		Diametral	-	49.0	0.55	0.23	0.23	
S18303	03 BH101 11.15m Shale	Axial	52.0	40.0	1.28	0.48	0.49		
610204	DU101 11 75 m	Chala	Diametral	-	50.0	0.76	0.30	0.30	
S18304	304 BH101 11.75m Shale	Axial	52.0	39.0	0.65	0.25	0.25		
C10205	DU101 12 15 m	Chala	Diametral	-	50.0	0.75	0.30	0.30	
S18305	BH101 12.15m	Shale	Axial	52.0	42.0	2.88	1.04	1.06	
S18306	BH101 12.75m	Shale	Diametral	-	49.0	0.66	0.27	0.27	
318300	61101 12.7511	Silale	Axial	52.0	38.0	3.00	1.19	1.19	
S18307	BH101 9.30m	Shale	Diametral	-	49.0	0.01	0.00	0.00	
318307	51101 9.5011	Shale	Axial	52.0	26.0	0.13	0.08	0.07	
S18308	BH101 13.30m	Shale	Diametral	-	49.0	0.59	0.25	0.24	
518508	51101 15.5011	Shale	Axial	52.0	44.0	1.87	0.64	0.66	
S18309	BH101 13.80m	Shale	Diametral	-	50.0	0.37	0.15	0.15	
510505	51101 15.5011	Shale	Axial	52.0	37.0	0.66	0.27	0.27	
Comr	nents:								
1	document are tracea	ts, calibrations and/or measure ble to Australian/national st	andards. Accredited for		Authorised	Signat	ory:		
NAT	compliance with ISO/ except in full.	IEC 17025. This document	snall not be reproduced,				_		25/10/2016
	NATA Accredit	ed Laboratory Numb	er: 14874		Chris Ll	oyd			Date:
	QUARIE TECH								Macquarie Geotech Unit 8/10 Bradford Street Alexandria NSW

	I	POINT LO	AD STRE	NGTH	INDE)	K RI	EPOR	T	
Client:	El Australia Pty Ltd			Moisture Content Condition:	As Receive	ed			
Address:	Suite 6.01, 55 Miller S	treet, Pyrmont, NSV	V 2009	Storage History:	Core Box				
Project:	26-28 Shepherd St, Li	verpool (E23125)		Report No:	S18310-PL	-			
Job No:	S16426			Date Tested:	20.10.16				
Test Proce		AS4133 4.1	Rock strength tests - Determinati	ion of point load strength	index				
Sampling:						Date	Sampled:		21.09.16
Preparatio	on: Prepared in	accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
S18310		Shale	Diametral	-	50.0	0.41	0.16	0.16	
310310	BH101 14.25m	Sildle	Axial	52.0	30.0	1.31	0.66	0.63	
640044			Diametral	-	49.0	0.58	0.24	0.24	
S18311	BH101 14.80m	Shale	Axial	52.0	46.0	0.76	0.25	0.26	
640242	DU404.45.25	Chala	Diametral	-	50.0	0.57	0.23	0.23	
S18312	BH101 15.25m	Shale	Axial	52.0	38.0	0.80	0.32	0.32	
640040	5114.04 45 75		Diametral	-	50.0	0.69	0.28	0.28	
S18313	BH101 15.75m	Shale	Axial	52.0	35.0	0.59	0.25	0.25	
	1	1		1	1	1	I	1	
Comr	nents:								
NAT	document are tracea	ts, calibrations and/or meas ole to Australian/national st IEC 17025. This document	andards. Accredited for		Authorised	Signate	ory:		25/10/2016
	NATA Accredit	ed Laboratory Numb	er: 14874		Chris Ll	oyd			Date:
MACO GEO	QUARIE TECH								Macquarie Geotechr Unit 8/10 Bradford Street Alexandria NSW

	F	POINT LO	AD STRE	NGTH	INDEX	K R	EPOR	T	
Client:	El Australia Pty Ltd			Moisture Content Condition:	As Receive	ed			
Address:	Suite 6.01, 55 Miller S	street, Pyrmont, NSV	V 2009	Storage History:	Core Box				
Project:	26-28 Shepherd St, L	iverpool (E23125)		Report No:	S18314-PL	-			
Job No:	S16426			Date Tested:	20.10.16				
Test Proc	edure: 🗸	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling						Date	Sampled:		22.09.16
Preparatio	on: Prepared in	accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
S18314	BH102 7.60m	Shale	Diametral	-	50.0	0.67	0.27	0.27	
510514	511027.0011	Shale	Axial	52.0	37.0	2.88	1.18	1.17	
S18315	BH102 8.10m	Shale	Diametral	-	50.0	0.52	0.21	0.21	
310313	BH102 8.10m	Sildle	Axial	52.0	34.0	1.48	0.66	0.64	
640246	DU1402.0.00	Chala	Diametral	-	50.0	0.18	0.07	0.07	
S18316	BH102 8.80m	Shale	Axial	52.0	36.0	1.71	0.72	0.71	
640247	DU1402.0.20		Diametral	-	50.0	0.16	0.06	0.06	
S18317	317 BH102 9.20m Shale	Axial	52.0	46.0	3.09	1.01	1.06		
C10010	DU102.0.75m	Chala	Diametral	-	50.0	0.81	0.32	0.32	
518318	18318 BH102 9.75m Shale	Axial	52.0	39.0	2.72	1.05	1.06		
610010	BH102 10.20m	Chala	Diametral	-	50.0	1.01	0.40	0.40	
S18319	BH102 10.2011	Shale	Axial	52.0	43.0	3.26	1.15	1.18	
S18320	BH102 10.70m	Shale	Diametral	-	50.0	0.47	0.19	0.19	
518520	BH102 10.70m	Shale	Axial	52.0	42.0	2.43	0.87	0.90	
S18321	BH102 11.20m	Shale	Diametral	-	50.0	0.11	0.04	0.04	
516521	61102 11.2011	Shale	Axial	52.0	45.0	3.61	1.21	1.26	
S18322	BH102 11.75m	Shale	Diametral	-	50.0	0.64	0.26	0.26	
510522	51102 11.7511	Silale	Axial	52.0	30.0	2.54	1.28	1.21	
S18323	BH102 12.20m	Shale	Diametral	-	50.0	0.26	0.10	0.10	
510525	51102 12.2011	Shale	Axial	52.0	37.0	4.08	1.67	1.66	
Comr	nents:								
1	document are traceal	ts, calibrations and/or meas ble to Australian/national st IEC 17025. This document	andards. Accredited for		Authorised	Signat	ory: 2		
	except in full.		shan not be reproduced,		9		_		25/10/2016
	NATA Accredit	ed Laboratory Numb	er: 14874		Chris Ll	oyd	1		Date:
	QUARIE TECH								Macquarie Geotech Unit 8/10 Bradford Street Alexandria NSW

	F	POINT LO	AD STRE	NGTH	INDE)	K RI	EPOR	T	
Client:	El Australia Pty Ltd			Moisture Content Condition:	As Receive	ed			
Address:	Suite 6.01, 55 Miller S	treet, Pyrmont, NSV	V 2009	Storage History:	Core Box				
Project:	26-28 Shepherd St, L	iverpool (E23125)		Report No:	S18324-PL	-			
Job No:	S16426			Date Tested:	20.10.16				
Test Proce	edure:	AS4133 4.1	Rock strength tests - Determinati	on of point load strength	index				
Sampling:						Date	Sampled:		22.09.16
Preparatio	on: Prepared in	accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
610224	DU4024275	Chala	Diametral	-	50.0	0.33	0.13	0.13	
S18324	BH102 12.75m	Shale	Axial	52.0	35.0	5.47	2.36	2.32	
640005			Diametral	-	50.0	0.47	0.19	0.19	
S18325	BH102 13.10m	Shale	Axial	52.0	34.0	4.71	2.09	2.04	
Comr	nents:								
NAT	document are traceal	ts, calibrations and/or meas ole to Australian/national st EC 17025. This document	andards. Accredited for		Authorised	Signato	ory:		25/10/2016
	NATA Accredit	ed Laboratory Numb	er: 14874		Chris Ll	oyd			Date:
MACO GEO	QUARIE								Macquarie Geotechr Unit 8/10 Bradford Street Alexandria NSW

	F	POINT LO	AD STRE	NGTH	INDEX	K RI	EPOR	T	
Client:	El Australia Pty Ltd			Moisture Content Condition:	As Receive	ed			
Address:	Suite 6.01, 55 Miller S	treet, Pyrmont, NSV	V 2009	Storage History:	Core Box				
Project:	26-28 Shepherd St, L	iverpool (E23125)		Report No:	S18326-PL	-			
Job No:	S16426			Date Tested:	20.10.16				
Test Proce	edure: 🗹	AS4133 4.1	Rock strength tests - Determinat	ion of point load strength	index				
Sampling: Preparation		Client accordance with the t	act mathed			Date	Sampled:		22.09.16
Preparatio	SII. Piepaied III		est metriod						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
S18326	BH103 8.30m	Chala	Diametral	-	41.0	0.03	0.02	0.02	
318320	BH103 8.30m	Shale	Axial	52.0	36.0	0.07	0.03	0.03	
640007			Diametral	-	50.0	0.08	0.03	0.03	
S18327	BH103 9.30m	Shale	Axial	52.0	36.0	0.57	0.24	0.24	
640220	DU402.0 75	Chala	Diametral	-	49.0	0.44	0.18	0.18	
S18328	BH103 9.75m	Shale	Axial	52.0	37.0	2.46	1.00	1.00	
640220	DU402.40.25m		Diametral	-	49.0	0.60	0.25	0.25	
\$18329	S18329 BH103 10.25m Shale	Shale	Axial	52.0	34.0	0.89	0.40	0.39	
640220	DU102.10.00		Diametral	-	50.0	0.34	0.14	0.14	
S18330	BH103 10.80m	Shale	Axial	52.0	41.0	2.40	0.88	0.90	
640004	5114.00.44.05		Diametral	-	49.0	0.56	0.23	0.23	
S18331	BH103 11.25m	Shale	Axial	52.0	37.0	2.50	1.02	1.02	
610222	DU102 11 75 m	Chala	Diametral	-	49.0	1.14	0.47	0.47	
S18332	BH103 11.75m	Shale	Axial	52.0	40.0	1.55	0.59	0.59	
610222	DU102 12 25m	Chala	Diametral	-	50.0	0.38	0.15	0.15	
S18333	BH103 12.25m	Shale	Axial	52.0	37.0	7.37	3.01	2.99	
610224	DU102.12.05m	Chala	Diametral	-	50.0	0.28	0.11	0.11	
S18334	BH103 12.65m	Shale	Axial	52.0	39.0	3.66	1.42	1.43	
640225	DU402.42.25		Diametral	-	50.0	1.13	0.45	0.45	
S18335	BH103 13.25m	Shale	Axial	52.0	35.0	2.91	1.26	1.23	
Comr	ments:								
NAT	document are traceal	ts, calibrations and/or meas ole to Australian/national st IEC 17025. This document	andards. Accredited for		Authorised		ory:		25/10/2016
		ed Laboratory Numb	er: 14874		Chris Ll	oyd			Date:
	QUARIE TECH								Macquarie Geotech Unit 8/10 Bradford Street Alexandria NSW

	POINT LOAD STRENGTH INDEX REPORT								
Client:	El Australia Pty Ltd			Moisture Content Condition:	As Receive	ed			
Address:	Suite 6.01, 55 Miller S	Street, Pyrmont, NSV	V 2009	Storage History:	Core Box				
Project:	26-28 Shepherd St, L	iverpool (E23125)		Report No:	S18336-PL	-			
Job No:	S16426			Date Tested:	20.10.16				
Test Proce			Rock strength tests - Determinati	on of point load strength	index				
Sampling:			act mathed			Date	Sampled:		22.09.16
Preparatio	on: Prepared in	accordance with the t	est method						
Sample Number	Sample Source	Sample Description	Test Type	Average Width (mm)	Platen Separation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes
S18336	BH103 13.75m	Shale	Diametral	-	50.0	0.88	0.35	0.35	
310330	BH105 15.75III	Sildle	Axial	52.0	37.0	4.02	1.64	1.63	
S18337	DU1402.4.4.20.0	Chala	Diametral	-	50.0	0.69	0.28	0.28	
219221	BH103 14.20m	Shale	Axial	52.0	32.0	2.53	1.19	1.15	
S18338	BH103 14.75m	Shale	Diametral	-	49.0	0.98	0.41	0.40	
310320	BH105 14.75III	Silale	Axial	52.0	29.0	2.14	1.11	1.05	
S18339	BH103 15.25m	Shale	Diametral	-	50.0	0.49	0.20	0.20	
310339	вптоз тэ.25ш	Shale	Axial	52.0	34.0	1.39	0.62	0.60	
S18340	RH102 15 75m	Shalo	Diametral	-	50.0	0.81	0.32	0.32	
510540	40 BH103 15.75m Shale -	Axial	52.0	33.0	0.94	0.43	0.42		
S18341	BH103 16.10m	Shale	Diametral	-	50.0	0.04	0.02	0.02	
510541	Bill05 10.10iii	Share	Axial	52.0	40.0	5.57	2.10	2.13	
		-							
Comr	nents:								
	document are tracea	ts, calibrations and/or meas ble to Australian/national st	andards. Accredited for		Authorised	Signat	ory:		
NAT		IEC 17025. This document			9		2		25/10/2016
		ed Laboratory Numb	er: 14874		Chris Ll	oyd			Date:
GEO	QUARIE TECH								Macquarie Geotechr Unit 8/10 Bradford Street Alexandria NSW

	MOIST	JRE CONT	ENT TE	ST REPORT	
Client:	EI Australia Pty Ltd		Job No:	S16426	
Address:	Suite 6.01, 55 Miller Street, Pyrmo	nt, NSW 2009	Report No:	S18342-MC	
Project:	26-28 Shepherd St, Liverpool (E23	125)			
Test Proc	AS4133 1.1.1		ation of the moisture con ials (Standard method)	ent of a soil - Oven drying method (Standard method). tent of rock - Oven drying method (standard method)	
Sampling				Date Sampled:	21-22.09.16
Preparatio		rith the test method	Comula Da		Moisture Content %
Sample No.	BH101 4.5-4.95m		Sample Des		_
S18342					15.7
S18343	BH101 9.0-9.1m		silty Cl		11.8
S18344	BH102 1.5-1.95m		silty Cl		23.3
					-
					_
					_
Notes:					
	The results of the tests, calibrations and			Authorised Signatory:	
NAT	in this document are traceable to Au Accredited for compliance with ISO/IEC not be reproduced, except in full.	stralian/national standards.		inge	25/10/2016
	NATA Accredited Laborator	y Number: 14874		Chris Lloyd	Date:
GEO	QUARIE DŢECH				Macquarie Geotechnical Unit 8/10 Bradford Street Alexandria NSW 2015

	SOIL CLASSIF		REPORT	
Client:	El Australia Pty Ltd	Source:	BH101 4.5-4.95m	
Address:	Suite 6.01, 55 Miller Street, Pyrmont, NSW 2009	Sample Description:	silty CLAY	
Project:	26-28 Shepherd St, Liverpool (E23125)	Report No:	S18342-PI	
Job No:	S16426	Lab No:	S18342	
Test Proce	edure:       Image: Control of the system of t	of the liquid limit of a soil - F of the liquid limit if a soil - O of the plastic limit of a soil - he plasticity Index of a soil	ne point Casagrande method (subsidiary method) Standard method	21-22.09.16
Preparatio			Date Gampled.	21-22.03.10
	Plastic Limit (%): 13 F Plastic Index: 16 Plasticity Chart for Classification	ield Moisture C		
	5		Silt	
		) 50	60 70	80
		iquid Limit %	00 70	
	Soil Preparation Metho Soil Histor Soil Conditio	y: Oven Dried		
NAT	The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Accredited for compliance with ISO/IEC 17025. This document shall not be reproduced, except in full.		Authorised Signatory:	25/10/2016
	NATA Accredited Laboratory Number: 14874		Chris Lloyd	Date:
MACO GEO				Macquarie Geotechnical Unit 8/10 Bradford Street Alexandria NSW 2015

	SOIL CLASSIFI		REPORT								
Client:	El Australia Pty Ltd	Source:	BH102 1.5-1.95m								
Address:	Suite 6.01, 55 Miller Street, Pyrmont, NSW 2009	Sample Description:	silty CLAY								
Project:	26-28 Shepherd St, Liverpool (E23125)	Report No:	S18344-PI								
Job No:	S16426	Lab No:	S18344								
Test Proce Sampling:	AS1289 3.1.1 Soil classification tests - Determination of the liquid limit of a soil - Four point casagrande method AS1289 3.1.2 Soil classification tests - Determination of the liquid limit if a soil - One point Casagrande method (subsidiary method) AS1289 3.2.1 Soil classification tests - Determination of the plastic limit of a soil - Standard method AS1289 3.3.1 Soil classification tests - Determination of the plasticily Index of a soil AS1289 3.3.1 Soil classification tests - Calculation of the plasticily Index of a soil AS1289 3.4.1 Soil classification tests - Determination of the linear shrinkage of a soil - Standard method Sampled by Client Date Sampled: 21-22.09.16										
Preparatio	n: Prepared in accordance with the test method		·								
	Plastic Limit (%): 18 F Plastic Index: 43 Plasticity Chart for Classification	of Fine-grained									
		50 60	70 80 90	100							
		iquid Limit %									
	Soil Preparation Method Soil Histor Soil Condition	y: Oven Dried									
NAT			Authorised Signatory:	25/10/2016							
MACO GEO	NATA Accredited Laboratory Number: 14874		Chris Lloyd	Date: Macquarie Geotechnical Unit 8/10 Bradford Street Alexandria NSW 2015							



### **ANALYTICAL REPORT**





CLIENT DETAILS		LABORATORY DE	TAILS
Contact Client Address	Benjamin Aggar EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95160722	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	benjamin.aggar@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com
Project	E23125 - 26-28 Shepherd St, Liverpool NSW	SGS Reference	<b>SE157748 R0</b>
Order Number	E23125	Date Received	4/10/2016
Samples	15	Date Reported	13/10/2016

- COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SPOCAS subcontracted to SGS Cairns, 2/58 Comport St, Portsmith QLD 4870, NATA Accreditation Number: 2562, Site Number: 3146.

SIGNATORIES

Dong Liang Metals/Inorganics Team Leader

km/m/

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au



#### pH in soil (1:5) [AN101] Tested: 5/10/2016

			BH102_0.8-1.0	BH104_0.7-1.0
			SOIL	SOIL
			- 21/9/2016	- 23/9/2016
PARAMETER	UOM	LOR	SE157748.001	SE157748.007
pH	pH Units	-	9.5	8.3



#### Conductivity and TDS by Calculation - Soil [AN106] Tested: 5/10/2016

			BH102_0.8-1.0	BH104_0.7-1.0
			SOIL	SOIL
			- 21/9/2016	- 23/9/2016
PARAMETER	UOM	LOR	SE157748.001	SE157748.007
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	260	190



#### Moisture Content [AN002] Tested: 6/10/2016

			BH102_0.8-1.0	BH104_0.7-1.0
			SOIL	SOIL
			- 21/9/2016	- 23/9/2016
PARAMETER	UOM	LOR	SE157748.001	SE157748.007
% Moisture	%w/w	0.5	24	20



### SE157748 R0

#### Sample Subcontracted [] Tested: 13/10/2016

			BH102_2.0-2.2	BH102_2.9-3.0	BH102_3.9-4.0	BH102_4.9-5.0	BH102_5.8-6.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			21/9/2016	21/9/2016	21/9/2016	21/9/2016	21/9/2016
PARAMETER	UOM	LOR	SE157748.002	SE157748.003	SE157748.004	SE157748.005	SE157748.006
Sample Subcontracted*	No unit	-	Subcontracted	Subcontracted	Subcontracted	Subcontracted	Subcontracted

			BH104_1.8-2.0	BH104_2.8-3.0	BH104_3.8-4.0	BH104_4.8-5.0	BH104_5.8-6.0
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 23/9/2016	- 23/9/2016	- 23/9/2016	- 23/9/2016	- 23/9/2016
PARAMETER	UOM	LOR	SE157748.008	SE157748.009	SE157748.010	SE157748.011	SE157748.012
Sample Subcontracted*	No unit	-	Subcontracted	Subcontracted	Subcontracted	Subcontracted	Subcontracted

			BH104_6.8-7.0	BH104_7.8-8.0	BH104_8.5-9.0
			SOIL	SOIL	SOIL
					-
			23/9/2016	23/9/2016	23/9/2016
PARAMETER	UOM	LOR	SE157748.013	SE157748.014	SE157748.015
Sample Subcontracted*	No unit	-	Subcontracted	Subcontracted	Subcontracted



METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as $\mu$ mhos/cm or $\mu$ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.

#### FOOTNOTES -

*	NATA accreditation does not cover	-	Not analysed.	UOM	Unit of Measure.
	the performance of this service.	NVL	Not validated.	LOR	Limit of Reporting.
**	Indicative data, theoretical holding	IS	Insufficient sample for analysis.	↑↓	Raised/lowered Limit of
	time exceeded.	LNR	Sample listed, but not received.		Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : <u>http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf</u>

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at <a href="http://www.sgs.com/en/terms-and-conditions">http://www.sgs.com/en/terms-and-conditions</a>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.



### **ANALYTICAL REPORT**





CLIENT DETAILS		LABORATORY DE	TAILS	
Contact Client Address	James Zhao EI AUSTRALIA SUITE 6.01 55 MILLER STREET PYRMONT NSW 2009	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015	
Telephone	61 2 95160722	Telephone	+61 2 8594 0400	
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499	
Email	james.zhao@eiaustralia.com.au	Email	au.environmental.sydney@sgs.com	
Project	E23125 - 26-28 Shepherd St, Liverpool	SGS Reference	<b>SE157855 R0</b>	
Order Number	E23125	Date Received	6/10/2016	
Samples	3	Date Reported	12/10/2016	

- COMMENTS

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong Liang Metals/Inorganics Team Leader

kmln

Ly Kim Ha Organic Section Head

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

www.sgs.com.au



#### pH in soil (1:5) [AN101] Tested: 10/10/2016

			BH101 7.5-7.95	BH101 1.5-1.95
			SOIL	SOIL
			- 21/9/2016	- 21/9/2016
PARAMETER	UOM	LOR	SE157855.001	SE157855.002
pH	pH Units	-	7.5	8.3



#### Conductivity and TDS by Calculation - Soil [AN106] Tested: 10/10/2016

			BH101 7.5-7.95	BH101 1.5-1.95
			SOIL	SOIL
			21/9/2016	21/9/2016
PARAMETER	UOM	LOR	SE157855.001	SE157855.002
Conductivity of Extract (1:5 dry sample basis)	µS/cm	1	45	240



#### Soluble Anions (1:5) in Soil by Ion Chromatography [AN245] Tested: 10/10/2016

			BH101 7.5-7.95	BH101 1.5-1.95
			SOIL	SOIL
			-	-
			21/9/2016	21/9/2016
PARAMETER	UOM	LOR	SE157855.001	SE157855.002
Chloride	mg/kg	0.25	2.9	7.2
Sulphate	mg/kg	5	36	120



#### Moisture Content [AN002] Tested: 10/10/2016

			BH101 7.5-7.95	BH101 1.5-1.95
			SOIL	SOIL
			- 21/9/2016	- 21/9/2016
PARAMETER	UOM	LOR	SE157855.001	SE157855.002
% Moisture	%w/w	0.5	22	16



### SE157855 R0

#### pH in water [AN101] Tested: 10/10/2016

			BH102
			WATER
			- 28/9/2016
PARAMETER	UOM	LOR	SE157855.003
pH**	No unit	-	6.7



#### Conductivity and TDS by Calculation - Water [AN106] Tested: 10/10/2016

			BH102
			WATER
			- 28/9/2016
PARAMETER	UOM	LOR	SE157855.003
Conductivity @ 25 C	µS/cm	2	8900



#### Anions by Ion Chromatography in Water [AN245] Tested: 10/10/2016

			BH102
			WATER
			- 28/9/2016
PARAMETER	UOM	LOR	SE157855.003
Chloride	mg/L	0.05	2500
Sulphate, SO4	mg/L	1	730



METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, sediments and sludges, an extract with water (or 0.01M CaCl2) is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as $\mu$ mhos/cm or $\mu$ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, CI, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

FOOTNOTES -

*	NATA accreditation does not cover the performance of this service.	- NVL	Not analysed. Not validated.	UOM LOR	Unit of Measure. Limit of Reporting.
**	Indicative data, theoretical holding time exceeded.	IS LNR	Insufficient sample for analysis. Sample listed, but not received.	ţ↑	Raised/lowered Limit of Reporting.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : <u>http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf</u>

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at <a href="http://www.sgs.com/en/terms-and-conditions">http://www.sgs.com/en/terms-and-conditions</a>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

# **APPENDIX C**

BOREHOLE LOGS, CORE PHOTOS, AND LABORATORY TEST RESULTS (ASSET GEOTECHNICAL ENGINEERING PTY LTD)



ASSET GEOTECHNICAL geotechnical engineering consultants

Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005

BH no: BH1 sheet: 1 of 2 iob no.: 2936

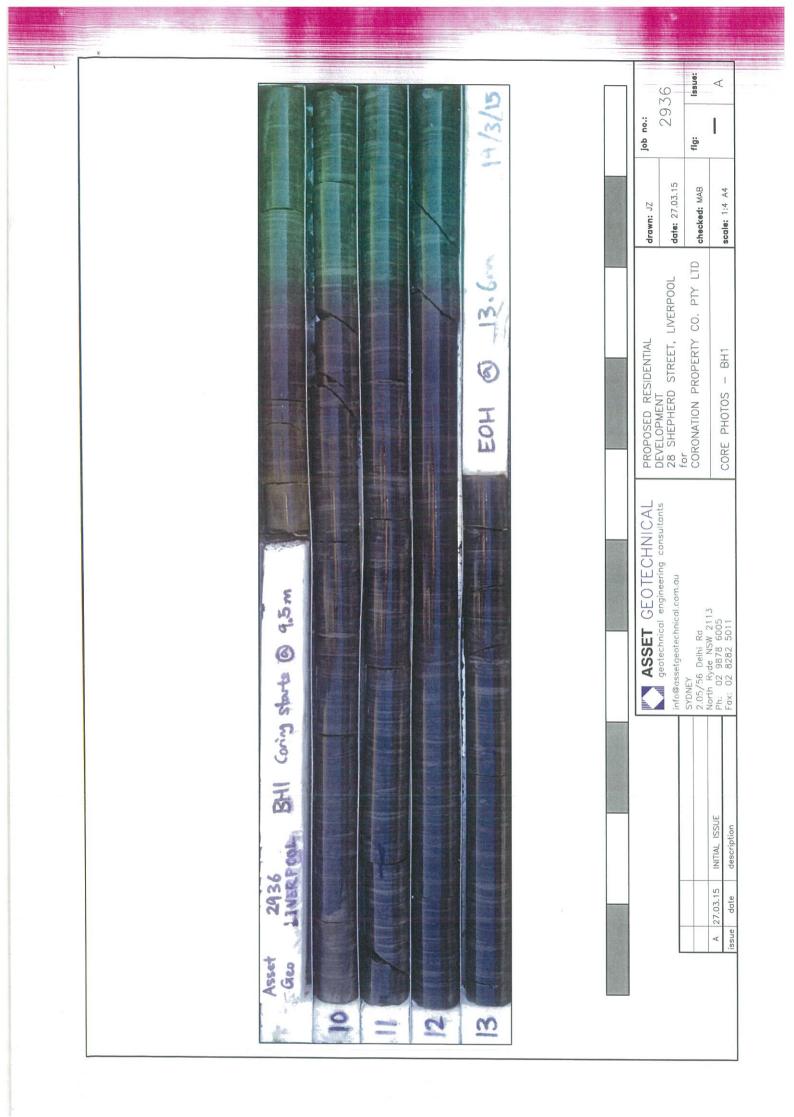
# Rorehole Log

			le L	_					Ph: 02 9878 6005 Fax: 02 8282 5011			ob no.:	2936
lie		×	C	CORC	ONA	TION	N PROF	PERTY	CO. PTY LTD			started:	19.3.2015
	cipa		-								1	finished	: 19.3.2015
	ect:								DEVELOPMENT			ogged:	JZ
	tion								ERPOOL			checked	
	ipme						TRACI					RL surfa	up;
_	nete		mation	.00m	Im				O° bearing: E: N:			datum:	AHD
11.11	nigi		nation		T		mate	rial int	ormation	1	1	1	·
							50	lod			≥×	hand penetro- meter	
g	ť		notes samples, tests, etc				graphic log	USCS symbol	material description	e G	enc /	and ene	structure and additional observations
method	support	water	ntes mpl sts,		oth	metres	ihqe	S	soil type: plasticity or particle characteristics	moisture condition	sist	L⊂ ⊆ E k₽a	additional observations
É	ns	Ň	te sa	물	de	ΞĔ	BL	SN	soil type: plasticity or particle characteristics, colour, secondary and minor components.	έŝ	consistency/ density index	<u>8888</u>	
AUI	c			_10	L		$\otimes$	CL	Gravelly CLAY, low to medium plasticity, dark grey, fine to coarse grained gravel, with rootlets at top	-Wp	<u> </u>	1	Fill
u.					L		XXX		0.05m				
					L	0.4		CL.	Sandy CLAY / Brick fragments, low plasticity, mottled dark grey and red	1			
					F								
			COT	_9	1								
			SPT 30,8,5	Γ	$\vdash$	1.2		СН	Sandy CLAY, medium to high plasticity, brown,	<b>N</b> 41-	VEE	4	
			N*=13		$\vdash$			~11	fine-grained sand	>Wp	VS-F		
					$\vdash$	1.6	))))	СН	CLAY, medium to high plasticity, dark grey	-	1		Alluvium or Slope Wash
					- ,								cardynam or stope wash
			D	_8	-								
					F								
İ			D SPT		Γ		$\langle / \rangle$				1		
		ļ	0,0,2		Γ		$\square$						
			N*=2 D		3	2.8		СН	CLAY, medium to high plasticity, red-brown				
			<i></i>	7					mottled grey, trace of fine grained sand				
		ŀ			-								
			D								1	· ·	
		[			F						[	:	
			D SPT	_6	4							× 150	
			6,5,6		-					1	St		
			N*=11 D		⊢					1		× 200	
					F	4.6	44A	SP-SC	Clayey SAND, fine to medium grained, brown	M	MD		Alluvium
			D		5							· ·	
				_5	ŕ							]	
					Γ		A					1 · ·	
			D SPT		Ľ							÷	
			4,5,6		L								
			N*=11 D		6								
				h-m.**	F							:	
			D		F								
			<u> </u>		-								
					7		$\wedge$						
		¶ ∄(	D SPT	_3	<u>+</u>		1			M-W	D		
		trillir.	5,7,7 N*=14		F								
		Seepage observed during drilling	,4 -14		-								
		duri			E		1						
		ba			8							: .	
		sen		2	_					1			
		e ot			-		11						
		Beda	SPT		L								
		See	4,7,8 N*=15		F								
_				_1	9								
0 ^ ^				-	-								Resistance felt in drilling rig
					$\vdash$								
					F				Borehole No: BH1 continued as cored hole from 9.5m	<u> </u>	1		
				Ì	10								
FF	EP TO	יחעם ו	ANATIO				ESCO:07	1000	TERMS AND SYMBOLS USED		<u> </u>	<u> </u>	Borehole Log - Revisio



Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005

BH1


2 of 2

BH no:

sheet:

# Corod Porchala I

en	t:			CORC		Ph:         02 9878 6005           Fax:         02 8282 5011			<i></i>	auto di	10.3.2015	
inc oje	ipal ect: ion:			PROP	OSED	RESIDENTIAL DEVELOPMENT RD STREET, LIVERPOOL			fin Iog	arted: hished: gged: ecked:	19.3.2015 19.3.2015 JZ MAB	
ui	ome	ent:		HANJ	IN D&	3 TRACK-MOUNTED				surface:		
-	ete	_		100m		inclination: -90° bearing: E:	N:		da	itum:	AHD	
illi	ng i	nfor	matio	on	mate	erial information			rc	ock mass	defects	
					2	rock substance description		estimated Is ₍₅₀₎ strength MPa		defect spacing	defect descrip	otion
	support & core-lift	water		depth	graphic log core recovery	rock type; grain characteristics, colour, structure, minor components	weathering	EL 0.03 VL 0.1 HH 1 0.3 HH 1 0.3 HH 1 0 edmetral × A=axial o	% O	'nm	type, inclinati thickness, sha roughness, co	ape,
	co su	Ŵ	RL	metres	gr		we	D=di A=axi	RQD	20 60 600 2000	specific	ger
		1	_1									
				_		Continued from non-cored borehole from 9.5m						
				_ 9.5		SHALE, dark grey, well developed, thinly laminated to medium bedded	SW	D=0.35		1200	JT 20° cu sm cl	
				10		inonan boada		A=0.34			_	
			_0									
				-								
				-							E	
				-					1	1	JT 45° pl sm cl	
				11				D=0.7		1	JT 45° pl sm cl JT 45° pl sm cl JT 45° pl sm cl JT 45° pl sm cl	
			1					A=1.03	1	5	JT 45° pl sm cl	
				-							20	
				Γ						ſ		
								0.00		L L	_	
				12				× D=0.99	1			
			2					A=0,8				
				-								
				<b>—</b>								
				Γ								
				13				D=0.6	1	5	JT 45° pl sm cl JT 45° pl sm cl	
			3			-		A=0.8	3	1	-	
				Γ								
										1	─ JT 30° pl sm cl ─ JT 20° cu sm cl	
				13.59		BH1 terminated at 13,59m						
				14								
			4	-								
				L								
				L								
				-								
			5	15								
		-		-								
				-								
				F								
				-								
			6	16								
				-								
				-								
					1							
				_				1 1 1 1 1 1 1 1		I E E E È		
										1.1.1.1.1.1		
			7	_ _ _ <u>1</u> 7								
			7	7								
			7	- - <u>1</u> 7 -								
			7	_ 								
			7									
			7	- <u>1</u> 7 - - - <u>18</u>								





Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005

BH no:	BH2
sheet:	1 of 2
job no.:	2936

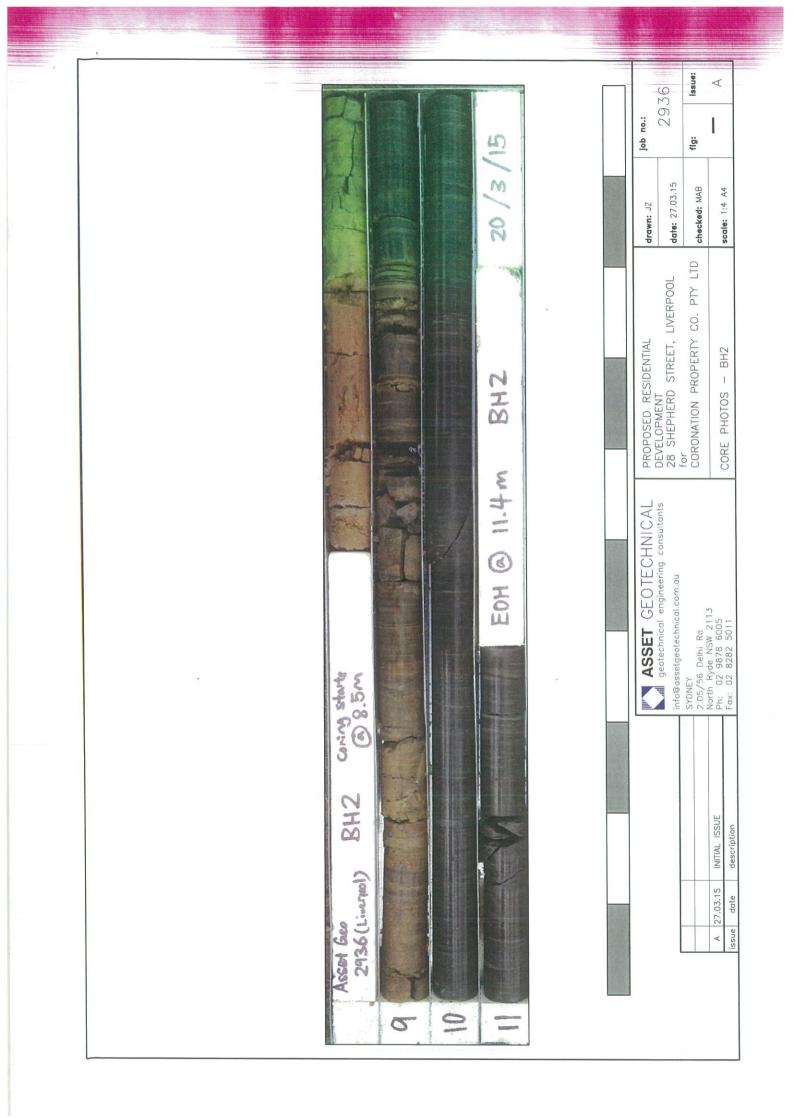
# **Borehole Log**

JUI	er	10	le L	og					Ph: 02 9878 6005 Fax: 02 8282 5011		1	ob no.:	2936
lient:			C	CORO	NATI	ION	PROP	ERTY	CO. PTY LTD			started:	19.3.2015 20.3.2015
orojec			F	ROP	OSED	D RE	SIDEN	ITIAL D	DEVELOPMENT			ogged:	JZ
ocatio	on:		2	8 SH	EPHE	ERD	STRE	ET, LIV	ERPOOL			checked	
quip							TRACK				1	RL surfa	
liame	_	_		.00m	m	i	the second se		0° bearing: E: N:		(	datum:	AHD
Irillin	g int	form	ation			$ \rightarrow $	mate	rial inf	ormation				
method	support	water	notes samples, tests, etc	_	depth	letres	graphic log	USCS symbol	material description soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency/ density index	hand 6 penetro- meter	structure and additional observations
	sו ר	3	te si	RL	3 Ğ	E		CL	Gravelly CLAY, low to medium plasticity, dark grey,	E S <wp< td=""><td>de Co</td><td>100 300 400</td><td>Fill</td></wp<>	de Co	100 300 400	Fill
ADT				_10	_				fine to coarse grained gravel, with rootlets at top 0.05m, with brick fragments				
					-	Ř							
			SPT		1	Š							
			4,5,11		-	B							
		L	N*=16 D	_9	-	B							
					-	1.6	111	CH	CLAY, medium to high plasticity, dark brown, with	>Wp	St-VSt		Alluvium or Slope Wash
					2	F	$//\lambda$		fine grained sand				CONTRACTORIZATION AND A MARK SCIENCES IN THE AND A DESCRIPTION OF
		t	D			E	$//\lambda$						
				0	-	E	$//\lambda$						
		L	D	-°	-	ł	$//\lambda$					× 150	
			SPT 1,3,6		-		$//\lambda$						
		1	1,3,6 N*=9	1	3		$\langle \rangle \rangle$					× 100	
			D	1		3.1	444	СН	CLAV medium to high plasticity and brown	-			
				7		3.1	1///	CH	CLAY, medium to high plasticity, red-brown mottled grey, trace of fine grained sand				
			D	1		E	1///						
					-	ł							
		-	D	-	4	ł	1///						
			SPT	1		t	1//						
			5,4,7 N*=11	6		ŀ	$\left \right \right $						
		Č	D	ſ		ŀ	$   \rangle$						
						ł	$///\lambda$						
					5	l						11111	
						ł							
				5		ł							
			D SPT	T			//						
			3,3,5			ł	$  \rangle$						
		ł	N*=8 D	4	6	5.8		CH	Sandy CLAY, medium to high plasticity, fine to medium, brown	1			Alluvium
					L	ŀ			inediani, brown				
				_4	L		$\square$						
			D	-		ľ							
					L		111						
	1	► t	D	t	7		1/1/						
		during drilling	SPT 2,7,6		L	ł	IIA					× 100	
		dril	N*=13	_3	L		$   \rangle$					100	
		ring					1/1						
		qui			L		11/1						
		rvec			8		1/1						
		observed			-		////						Desistant Child Link
		Ð		_2	-	8.3	111	CH	CLAY, medium to high plasticity, mottled brown	1		× 20	Resistance felt in drilling rig Residual
		Seepag							and grey, trace of shale fragments Borehole No: BH2 continued as cored hole from	1			
		See			-				8.5m				
					9								
					-								
				_1	-								
					-								
				1								1 : : : :	
					10	- 1							



Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005

BH2


2 of 2

BH no:

sheet:

# Cored Borebole Log

Co	re	d	Bo	reho	ole I	log	North Ryde NS Ph: 02 9878 60 Fax: 02 8282 50	W 2113 005					o no.:	2936	
clier prin proj loca		al: : :		CORO PROPO 28 SH	NATIO DSED I EPHER	N PROPERTY CO RESIDENTIAL DEV D STREET, LIVER TRACK-MOUN	/ELOPMENT POOL					fin log che	arted: ished: gged: ecked: surface:	19.3.2015 20.3.2015 JZ MAB 10.4 m	
diar	nete	er:		100m	m	inclination: -90°		E:	N:				tum:	AHD	
drill	ingi	info	mati	on	mate	erial information						ro	ck mass	defects	
method	support & core-lift	water	RL	depth metres	graphic log core recovery	rock type;	grain characteristics ure, minor compone	, colour,	weathering	estimated strength MPa E000 F E E H H	D=diametral × Z n A=axial o $\frac{100}{100}$	RQD %	defect spacing mm	defect descrip type, inclination thickness, sha roughness, coa specific	on, pe,
NMLC			_2 _1 _0 1 2 3 4 5 6 7	- 8.3 - 8.3 - 9       		Continued fron SHALE, dark grey, wel medium bedded BH2 terminated at 11.		e from 8.5m aminated to	RS TXW- HW		D=0.1 A=0.09 D=0.53 A=1.5			SM JT 90° pl sm co JT 90° pl sm cl SZ SM with clay infill JT 60° pl sm cl JT 60° pl sm cl JT 50° pl sm cl JT 60° pl sm cl JT 60° pl sm cl JT 60° pl sm cl	BP 0-5° pl sm cl/co
RE	FER T	O EX	PLANA	18 TION SHE	ETS FOR	DESCRIPTION OF TE	RMS AND SYMBOL	S USED						Cored Borehole Log - R	Revision 9



ASSET GEOTECHNICAL geotechnical engineering consultants Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011 BH no:BH3sheet:1 of 2job no.:2936started:20.3.2015finished:20.3.2015logged:JZchecked:MAB

# **Borehole Log**

			le L	05				Fax: 02 8282 5011				
lient			C	ORO	NATIO	N PROP	ERTY	CO. PTY LTD			tarted:	
rinci roje	ipal:		D	ROP	OSED P	FSIDEN		DEVELOPMENT			inished: ogged:	: 20.3.2015 JZ
	ion:							ERPOOL			hecked	
quip	me	nt:	H	ANJI	N D&B	TRACK	-MOL	INTED		F	RL surfa	ce: 10.6 m appro
	eter			00m	m			0° bearing: E: N: ormation		(	latum:	AHD
	support		notes samples, tests, etc		th res	graphic log	USCS symbol	material description	moisture condition	consistency/ density index	자 hand 한 penetro- meter	structure and additional observations
mer	dns	water	note sam test	RL	depth metres	grap	usc	soil type: plasticity or particle characteristics, colour, secondary and minor components.	moi	den	600 000 000 000 000 000 000 000 000 000	
IUN	υ		SPT	_10	- - - <u>1</u>		CL	Gravelly CLAY, medium to high plasticity, mottled dark grey / red / dark brown, fine to coarse grained gravel, with rootlets at top 0.05m, with shale fragments	<wp< td=""><td></td><td></td><td>Fill 400</td></wp<>			Fill 400
			1,7,12 N*=19	_9	_  1.6		СН	CLAY, medium to high plasticity, red mottled grey, trace of fine grained sand		Н	×	400 Alluvium or Slope Wash — —
			SPT	8	2  -						×	400
			8,15,18 N*=33		_ 						×	400
				_7	_ _ 4						×	400
			SPT 5,7,13 N*=20	6								400
			SPT 5,8,6 N*=14	_5	5.	6	СН	Clayey SAND, fine to medium grained, brown mottled grey	M	D		Alluvium — — — — — — — —
		<b>•</b> ••	SPT	_4	_ _ 	8	СН	Shaley CLAY, medium to high plasticity, mottled grey and orange brown, with shale fragments	<wp< td=""><td>н</td><td>_</td><td>Residual &lt; 400</td></wp<>	н	_	Residual < 400
		drilling	9,11,R		-	////		Borehole No: BH3 continued as cored hole from				
		Seepage observed during dr		_3	8			7.3m				
				_1	-							
					10		DTION	DF TERMS AND SYMBOLS USED			1111	Borehole Log - Revision

						-INICAL Asset Geotechnical Engineering P info@assetgeotechnical.com.au	ty Ltd			BH	l no:	BH3	
				2	.9	SYDNEY Suite 2.05 / 56 Delhi Road				sh	eet:	2 of 2	
Со	ore	dl	Зо	reho	ole I	North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011				jol	b no.:	2936	
clie				CORO	NATIO	IN PROPERTY CO. PTY LTD					arted:	20.3.2015	1
1.	ncipa ject:			PROP	OSED I	RESIDENTIAL DEVELOPMENT					ished: gged:	20.3.2015 JZ	
loca	ation	:		28 SH	EPHER	ND STREET, LIVERPOOL				ch	ecked:	MAB	
	uipme mete			HANJI 100m		3 TRACK-MOUNTED inclination: -90° bearing: E:	N:				. surface: itum:	10.6 m AHD	
-	illing i		matic		· · · · · · · · · · · · · · · · · · ·	erial information	145				ock mass		
					۲	rock substance description		estimated strength	Is _{isei} MPa		defect spacing	defect descrip	otion
method	support & core-lift	ter		depth	graphic log core recovery	rock type; grain characteristics, colour, structure, minor components	weathering	MPa 1000000000000000000000000000000000000	D=diametral × A=axial o	ROD %	mm	type, inclinati thickness, sha roughness, coa	ipe,
E	in s		RL	metres	gra		Me	चह्रनेवन्द्र	D=dt	ß	888888	specific	general
		- Bulling		-		Continued from non-cored borehole from 7.3m							_
NMLC		Duur	_3	7.3		SHALE, dark brown motiled dark grey, well developed, thinly aminated to thinly bedded	XW - HW		D≈0.04			III-SM III 30° cu sm cl	-
		red di	Γ	F				C	A=0.62		2	JT 15° un sm cl	
		bsen		8 8		No core 0,30m						JT 85° pl sm cl SZ	
1		Seepage observed during		8.3		NO CORE SHALE, dark grey, well developed, thinly laminated to	sw			-		JT 90° cu sm cl	-
		Seep	2	-		medium bedded			D=0.8	1			lsm -
				9					A≕1.07		l l		8P 0-5° pl sm cl
				F								-	<del>с</del> в
		1	,	<b> </b>					D=0.3	4			-
			F'	F					A≈0.7		5		
				<u>1</u> 0									
	<b></b>		1	10.27	<u> </u>	BH3 terminated at 10.27m							-
			_0	-									_
				- 11									-
				_									-
				-									-
			'	_									-
				12									_
				-									-
			_·2	F									-
				13									-
				-									***
			3	-									-
				14									
				-									
			4										-
				L.			1						-
				15									
	SALES A LONG			F									
			_ ^{.5}	-									
				16									
2/4/15	l			L									-
2 F-45	And a second second second		6	-									
LOGS.GPJ				F									-
<u>6</u>	FFEDT					R DESCRIPTION OF TERMS AND SYMBOLS USED					1.1.1.1	Cored Borehole Log -	Beuision 0
	LIERI		LAINA		LLIS FU	A DESCRIPTION OF TERMIS AND STIVIBULS USED						colea poletible F08 -	nevision 9





Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005

BH4 BH no: 1 of 2 sheet: ioh no · 2026

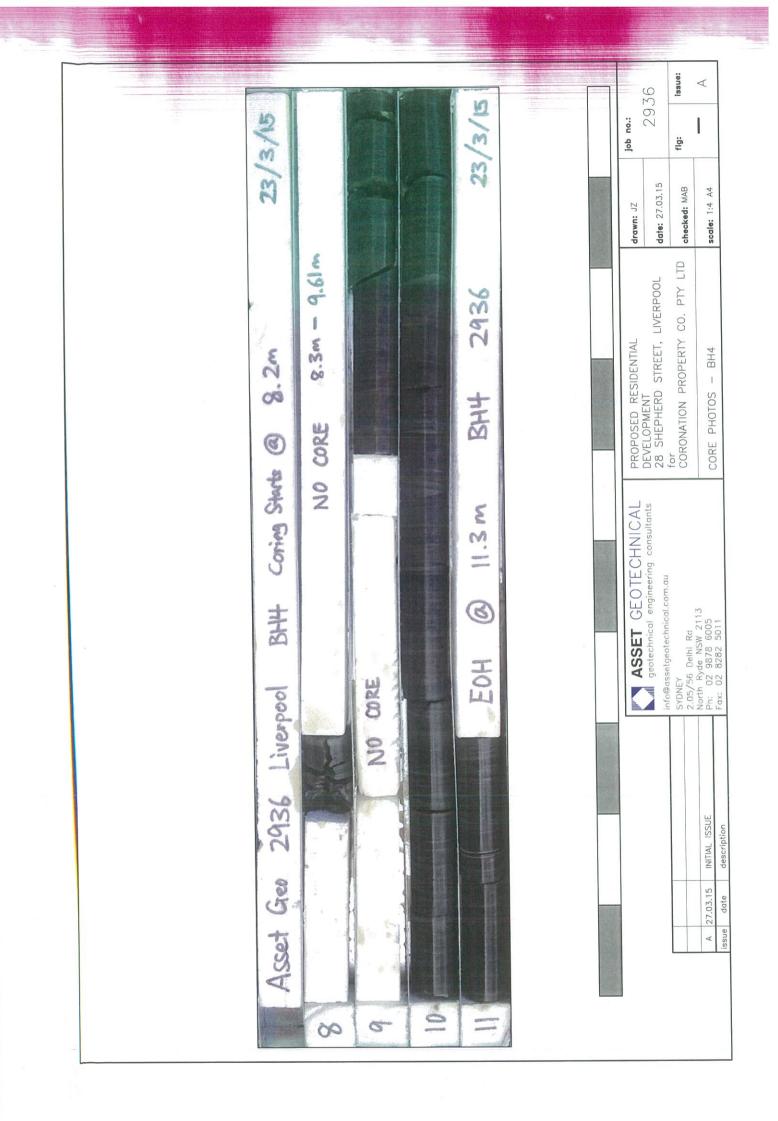
# Roroholo Log

50	re	nc	ole L	og				Ph: 02 9878 6005 Fax: 02 8282 5011		j	ob no.:	2936	
lier	nt:					N PROF	PERTY	CO. PTY LTD		5	tarted:	23.3.2015	5
	cipa	l:									inished		
	ect:							DEVELOPMENT		1	ogged:	JZ	
	tion	-						ERPOOL			hecked		
	ipme				IN D&B						RL surfa		appr
-	nete	_	mation	L00m	m			0° bearing: E: N:		(	latum:	AHD	
	ing i	mon	nation			mate	riai int	ormation					
						50	pol			lex	hand penetro- meter		
po	t		les, etc		S	ic lo	sym	material description	ion	tend y ind	iand iene nete	structure and additional observ	
method	support	water	notes samples, tests, etc		depth metres	graphic log	USCS symbol	soil type: plasticity or particle characteristics,	moisture condition	consistency/ density index	kPa		
		3	sa te	RL	a de	g		soil type: plasticity or particle characteristics, colour, secondary and minor components.		de	100 200 300 400		
ADI	U				_		CH	CLAY, medium to high plasticity, mottled dark brown and dark grey, trace of fine grained sand	¬Wp	н	×	466 or Slope Wash	
				10				0					
				_10	-	VIA							
					-								
			SPT	-	1						×	400	
			7,23,22 N*=45			VIIA							
			11 - 45	9	-	VIA					×	400	
					-	///							
					2	1///							
						VIA							
				0	_	1///							
			SPT	6	-	1///					×	400	
			9,13,17 N*=30		-	VIA							
				-	3						×	400	
						////							
				_7	-	1//	<u></u>						
					_ 3.5		СН	SAND, fine to medium grained, brown, with clay	Μ	MD-D		Alluvium	
					4								
			SPT	1									
			4,6,8 N*=14		L								
				6	_								
					_								
					5	1//							
					-	///							
				_5	-								
		ling	SPT 3,4,6										
		dril	N*=10		6 5.8	11	SP-SC	Clayey SAND, fine to medium grained, brown	M-W	1			
		Iring				/ /							
		np p			Ľ	/							
		erve		_4	Ľ.								
		Seepage observed during drilling			L	/ /							
		age		4	7	/							
		eep	SPT 3,5,13		-	/							
		S	N*=18	_3	-	/							
					-	/ /							
					8	/							
						/							
								Borehole No: BH4 continued as cored hole from 8.2m					
				_2	L			0.211					
					9								
					-								
				1	-								
					-								
					- 10								
					10		TION OF	TERMS AND SYMBOLS USED			1111	Borehole Log - R	



Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au SYDNEY Suite 2.05 / 56 Delhi Road North Ryde NSW 2113 Ph: 02 9878 6005

BH4


2 of 2

BH no:

sheet:

#### 1 1.1 0

ier				CORC	NATIC	ON PROPERTY CO. PTY LTD					arted:	23.3.201	
	cipa									fin	ished:	23.3.201	5
	ect:					RESIDENTIAL DEVELOPMENT				lo	gged:	JZ	
-	tior					RD STREET, LIVERPOOL					ecked:	MAB	
qui	ipm	ent:		HANJ	N D&I	B TRACK-MOUNTED					surface:	a second s	
	nete			100m	m	inclination: -90° bearing: E:	N:			da	tum:	AHD	
rilli	ing	infor	mati	on	mate	erial information				-	ock mass		
						rock substance description		estimated	Is ₍₅₀₎ MPa		defect		
					graphic log core recovery	Tock substance description	-	strength			spacing mm	defect descri	iption
2	ort &				ic lo	rock type; grain characteristics, colour,	sing	MPa	ral × o			type, inclinat	tion,
	support & core-lift	water		depth	aph ore r	structure, minor components	weathering	-0.03 -0.1 -0.3 -0.3 -0.3 -0.3 -0.3	amet	% Q		thickness, sh roughness, co	
=	S S	Ň	RL	metres	gr		WB	HATA LAE	D=diametral × A=axial o	RQD	20 60 200 2000	specific	ger
						Continued from non-cored borehole from 8.2m							
						SHALE, dark grey	XW -				1	sz	
8			_2			No core 1.30m	- LHW						
				9									
				-									
			_1	-									
				9.6		SHALE, dark grey, well developed, thinly laminated to	- sw	in Colored	D=0.83	-		-	
				-		medium bedded	300	0	A=1.71			— JT 25° pl sm cl	
				10								SZ	
				-								-	
				_									
			_0	L									
								X	D=0.9			-	
				11				2	A=1.21			JT 15° cu sm cl	
-		-	-	_ 11.3		RH4 terminated at 11 2m							
			1	11.3		BH4 terminated at 11.3m							
				_									
				- 10									
				12									
				-									
			2										
				_									
				_									
				13									
			3										
				-									
				14									
				<u>+</u> ⁴									
				-									
			4	-									
			<b>_</b>		-								
				15									
				_									
				_									
			5										
				16									
										E .			
				-									
			6	-									
				-									
				17									
				_									
			1.20	L									
			7	L									
				18									
								1 201200000 131 131 CC 1					



						-INICA onsulta		Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au		В	Н по:	BH5
	-			-	_			SYDNEY Suite 2.05 / 56 Delhi Rd		s	heet:	1 of 1
6	rel	ho	le L	og				North Ryde NSW 2113 Ph: 02 9878 6005 Fax: 02 8282 5011		j	ob no.:	2936
lier orin			С	ORO	NATIO			O. PTY LTD EVELOPMENT		f	tarted: inished: ogged:	23.3.2015 23.3.2015 JZ
	tion:							ERPOOL	-	c	hecked:	MAB
	ipme					TRACI					RL surfac	e: 10.5 m _{approx} AHD
_	neter ling in		 nation	.00m	EIL			D° bearing: E: N: prmation			latum:	And
method	support		notes samples, tests, etc		depth metres	graphic log	USCS symbol	material description soil type: plasticity or particle characteristics,	moisture condition	consistency/ density index	hand d penetro- meter	structure and additional observations
	su	Ň		륟	a de		5 СН		Ē S <wp< td=""><td>се </td><td>8888</td><td>Fill</td></wp<>	се 	8888	Fill
ADT					-		СП	dark grey / red / dark brown, fine to coarse grained gravel, with rootlets at top 0.05m	-105			111
				_10	_							
					1							
			SPT									-
			6,16,14 N*=30	_9	1.2	' 🗱	CL	Sandy CLAY, low to medium plasticity, fine grained sand, mottled dark brown and dark grey	∽Wp			
					-							
					2							
					-							
			SPT	В								
			4,3,5 N*=8		- 23	• 🕅	CL	Sandy CLAY, low to medium plasticity, fine grained	>Wp	St		Alluvium
				-	3			sand, red-brown				
				-	F							
				-	L							
				-	4						× 100	
			SPT 2,2,2		F							
			N*=4	6	-						× 100	
					Ľ							
					5							
			1		Ľ							
			SPT	5	5	5	CL	Sandy CLAY, medium to high plasticity, fine grained			× 100	
			3,2,7 N*=9		6			sand, grey			× 100	
		ling				6	SP-SC	Clayey SAND, fine to medium grained, grey	w	D-VD		
		g dril		_4	F							
		Seepage observed during drilling			L	1			1			
		rved		_	7							
		obse	SPT 12,10,1 N*=21		F						·	
		page		3								
		See			-							
					8							
				2	E							
			5PT 19		8	3.6 <u></u>	1	SHALE, dark brown mottled dark grey, extremely				Bedrock
			N*=19	)	9			weathered, extremely low to low strength		_		
					-	9		Borehole No: BH5 terminated at 9m				Near TC-bit refusal
R	1			L1	-							
					Ľ							
_					10	P DECON		FTERMS AND SYMBOLS USED	<u> </u>		1	Borehole Log - Revision

	ge	otecl	nnical e	ngine		-INIC. consulta		Asset Geotechnical Engineering Pty Ltd info@assetgeotechnical.com.au SYDNEY Suite 2.05 / 56 Delhi Rd North Ryde NSW 2113 Ph: 02 9878 6005		s	IH no: heet: ob no.:	<b>BH6</b> 1 of 1 2936
			le L	-				Fax: 02 8282 5011				
oroj	cipal ject:		Р	ROPO	OSED F	RESIDEI	NTIAL C	CO. PTY LTD DEVELOPMENT		f	tarted: inished: ogged:	JZ
_	ition: ipme					D STRE					hecked:	10.1
	neter			00m				O° bearing: E: N:			iatum:	ce: 10.4 m approx AHD
Irill	ing ir	nforn	nation			mate	erial inf	ormation				
method	support	water	notes samples, tests, etc	RL	depth metres	graphic log	USCS symbol	material description soil type: plasticity or particle characteristics, colour, secondary and minor components.	moisture condition	consistency/ density index	by hand by penetro- meter	structure and additional observations
ADT	S		с ° т	æ		- <u>~</u>	СН	CLAY, medium to high plasticity, mottled dark grey and dark brown, with rootlets at top 0.05m	-Wp		8888 8888 8	Fill
A		None observed during drilling		_10	- - - -		CL	Clayey SAND / Sandy CLAY, low to medium plasticity, fine to medium grained sand, mottled dark brown and dark grey				
					2	2	SP-SC	Clayey SAND, fine to medium grained, dark brown	М	L-MD		Alluvium
			SPT 6,9,10 N*=19 SPT 5,4,5 N*=9 SPT 3,4,7 N*=11	6	4 4 4 5 6 7		SP-SC	Clayey SAND, fine to medium grained, pale brown mottled pale grey				
			SPT 6,10,17 N*=27	_3	- 7.3 - 8 -		СН	CLAY, medium to high plasticity, grey	-Wp	H	- ×	4905iduəi — — — — — — — — — — — — — — — — — — —
				1	-	6		SHALE, dark brown mottled dark grey, extremely weathered, extremely low to low strength				Bedrock
				_1	9	9		Borehole No: BH6 terminated at 9m				Near TC-bit refusal
				1	-							
~	EEP T		LANATIC					F TERMS AND SYMBOLS USED	-	_		Borehole Log - Revision



# Certificate of Analysis



NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Asset Geotechnical Engineering Pty Ltd Suite 2.05 / 56 Delhi Road North Ryde NSW 2113

Attention:

James Zhao

Report451773-SProject name28 SHEPHERD ST LIVERPOOL 2936Received DateMar 24, 2015

Client Sample ID Sample Matrix Eurofins I mgt Sample No. Date Sampled			BH1 1.4-1.5M Soil S15-Ma18835	BH1 1.9-2.0M Soil S15-Ma18836	BH1 2.4-2.5M Soil S15-Ma18837	BH1 2.9-3.0M Soil S15-Ma18838
Test/Reference	LOR	Unit	Mar 19, 2015	Mar 19, 2015	Mar 19, 2015	Mar 19, 2015
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	7.5	7.6	7.7	7.9
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	5.9	5.4	7.5	6.6
Reaction Ratings*		comment	Slight	Slight	Vigorous	Vigorous

Client Sample ID			BH1 3.4-3.5M	BH1 3.9-4.0M	BH1 4.3-4.4M	BH1 4.9-5.0M
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins I mgt Sample No.			S15-Ma18839	S15-Ma18840	S15-Ma18841	S15-Ma18842
Date Sampled			Mar 19, 2015	Mar 19, 2015	Mar 19, 2015	Mar 19, 2015
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
PH-F (Field pH test)*	0.1	pH Units	7.5	7.7	7.5	8.6
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	5.4	5.7	5.9	6.1
Reaction Ratings*		comment	High	Slight	High	Slight

Client Sample ID Sample Matrix			BH1 5.4-5.5M Soil	BH1 5.8-5.9M Soil	BH1 6.4-6.5M Soil	BH1 6.9-7.0M Soil
Eurofins I mgt Sample No.			S15-Ma18843	S15-Ma18844	S15-Ma18845	S15-Ma18846
Date Sampled			Mar 19, 2015	Mar 19, 2015	Mar 19, 2015	Mar 19, 2015
Test/Reference	LOR	Unit			ć	·
Acid Sulfate Soils Field pH Test						
₽H·F (Field pH test)*	0.1	pH Units	7.8	7.9	8.0	7.8
PH-FOX (Field pH Peroxide test)*	0.1	pH Units	6.0	6.2	8.3	7.7
Reaction Ratings*		comment	Slight	Slight	Vigorous	Vigorous



Client Sample ID Sample Matrix Eurofins I mgt Sample No. Date Sampled Test/Reference Acid Sulfate Soils Field pH Test	LOR	Unit	BH2 0.9-1.0 Soil S15-Ma18847 Mar 20, 2015	BH2 1.4-1.5 Soil S15-Ma18848 Mar 20, 2015	BH2 2.0-2.1 Soil S15-Ma18849 Mar 20, 2015	BH2 2.4-2.5 Soil S15-Ma18850 Mar 20, 2015
pH-F (Field pH test)*	0.1	pH Units	7.8	7.7	7.7	6.9
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	7.4	6.9	7.6	4.9
Reaction Ratings*		comment	Vigorous	Vigorous	Vigorous	Vigorous

Client Sample ID Sample Matrix Eurofins I mgt Sample No. Date Sampled			BH2 2.8-2.9 Soil S15-Ma18851 Mar 20, 2015	BH2 3.4-3.5 Soil S15-Ma18852 Mar 20, 2015	BH2 3.9-4.0 Soil S15-Ma18853 Mar 20, 2015	BH2 4.3-4.4 Soil S15-Ma18854 Mar 20, 2015
Test/Reference	LOR	Unit		······································	······	
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0,1	pH Units	7.8	6.6	6.7	7.0
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	5.2	5.2	5.0	5.7
Reaction Ratings*		comment	Slight	Slight	Slight	Slight

Client Sample ID Sample Matrix Eurofins I mgt Sample No. Date Sampled			BH2 5.4-5.5 Soil S15-Ma18855 Mar 20, 2015	BH2 5.8-5.9 Soil S15-Ma18856 Mar 20, 2015	BH2 6.4-6.5 Soil S15-Ma18857 Mar 20, 2015	BH2 6.9-7.0 Soil S15-Ma18858 Mar 20, 2015
Tesl/Reference	LOR	Unit		,		,
Acid Sulfate Soils Field pH Test						
pHF (Field pH test)*	0,1	pH Units	7.1	7.4	7.5	7.5
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	6.8	7.9	7.5	7.4
Reaction Ratings*		comment	Vigorous	Vigorous	Vigorous	Vigorous

Client Sample ID			BH1 SPT 2.5- 2,95	BH1 SPT 5.5- 5.95	BH2 SPT 2.5- 2.95	BH2 SPT 5.5- 5.95
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins I mgt Sample No.			S15-Ma18859	S15-Ma18860	S15-Ma18861	S15-Ma18862
Date Sampled			Mar 19, 2015	Mar 19, 2015	Mar 20, 2015	Mar 20, 2015
Test/Reference	LOR	Unit				
					]	
Salinity (determined from EC)*	20	mg/kg	159	147	141	290



### Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation). It the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Salinity (determined from EC)*	Brisbane	Mar 27, 2015	0 Day
Acid Sulfate Soils Field pH Test	Brisbane	Mar 27, 2015	7 Day
- Method: LTM-GEN-7060			

Mie Reported: Apr 01, 2015

		E E		ABN 50 005 085 521 e.mail	EnviroSalı	e, mail : EnviroSales@eurofins.com.au	I Web : www.eurofins.com.au	Udarrugu 10,000 Phane: +61.3 8564 5000 NaTA # 1254 & 14271 Site # 1254 & 14271	Lane Cove West NSW 2068 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217	6 Phone : +61 7 3902 4600 NATA # 1261 Sile # 20794
Company Name: Address:		Asset Geotechnical Engine Suite 2.05 / 56 Delhi Road North Ryde NSW 2113	Asset Geotechnical Engineering Pty Ltd Suite 2.05 / 56 Delhi Road North Ryde NSW 2113	pt		Order No.: Report #: Phone: Fax:	451773 02 9878 6005		Received: Due: Priority: Contact Name:	Mar 24, 2015 3:23 PM Mar 31, 2015 5 Day James Zhao
Project Name:	28 SHEPHI	ERD ST LIVE	28 SHEPHERD ST LIVERPOOL 2936	Q					Eurofins I mgt Cli	Eurofins I mgt Client Manager: Charl Du Preez
	w v	Sample Detail	_		Salinity (determined from EC)*	Acid Sulfate Soils Field pH Test				
boratory where	Laboratory where analysis is conducted	Jucted								
lbourne Labora	Melbourne Laboratory - NATA Site # 1254 & 14271	∋#1254&1	4271							
dney Laborato	Sydney Laboratory - NATA Site # 18217	18217								
isbane Laborat	Brisbane Laboratory - NATA Site # 20794	# 20794			×	×				
External Laboratory	yry									
Sample ID S	Sample Date	Sampling Time	Matrix							
BH1 1.4-1.5M M	Mar 19, 2015		Soil	S15-Ma18835		×				
BH1 1.9-2.0M M	Mar 19, 2015		Soil	S15-Ma18836		×				
BH1 2.4-2.5M M	Mar 19, 2015		Soil	S15-Ma18837		×				
BH1 2.9-3.0M M	Mar 19, 2015		Soil	S15-Ma18838		×				
BH1 3.4-3.5M M	Mar 19, 2015		Soil	S15-Ma18839		×				
BH1 3.9-4.0M M	Mar 19, 2015		Soil	S15-Ma18840		×				
BH1 4.3-4.4M M	Mar 19, 2015		Soil	S15-Ma18841		×				
BH1 4.9-5.0M M	Mar 19, 2015		Soil	S15-Ma18842		×				
BH1 5.4-5.5M M	Mar 19, 2015		Soil	S15-Ma18843		×				
	7100 0012		100	C15-Ma18844		×				

Page 4 of 9

	ngt
eurofins	

Brisbane 1/21 Smailwood Place Murane OLD 4172 Phone - +61 7 3902 4600 NATA # 1261 Site # 20794 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2055 Phone - 561 2 5900 8400 NATA # 1261 Site # 18217 Melbourne 3-5 Kingston Town Close Oakleigh V/C 3166 Phone: +613 8564 5000 Phone: +1261 Sile # 1254 & 14271 ABN ± 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

515-Wal 18846     ×       S15-Ma1 8849     ×       S15-Ma1 8849     ×       S15-Ma1 8850     ×       S15-Ma1 8851     ×       S15-Ma1 8853     ×	

Report Number: 451773-S Page 5 of 9

S
S
Ц
O
2
Ū
60 ⁰ 0 0000

10 20 2

Brisbane 1/21 Smallwood Place Murarria OLD 4172 Phone - +61 7 3902 4600 NATA # 1261 Site # 20794 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2095 Phone : 461 2 9900 8400 NNTA # 1261 Sile # 18217

> web ; www.eurofins.com.au ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone + 61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Eurofins I mgt Client Manager: Charl Du Preez

Mar 24, 2015 3:23 PM Mar 31, 2015 5 Day James Zhao

Due: Priority: Contact Name:

Received:

Company Name: Address:	Asset Geotechnical Engineering Pty Ltd Suite 2.05 / 56 Delhi Road North Ryde NSW 2113		Order No.: Report #: Phone: Fax:	451773 02 9878 6005
Project Name:	28 SHEPHERD ST LIVERPOOL 2936			
	Sample Detail	Salinity (determined from EC)*	Acid Sulfate Soils Field pH Test	
Lahoratory where an	Lahoratory where analysis is conducted			
Melbourne Laborato	Melbourne Laboratory - NATA Site # 1254 & 14271			
Svdnev Laboratory - NATA Site # 18217	NATA Site # 18217			
		>	>	

× × ×

S15-Ma18856

S15-Ma18857

Soil Soil Soil Soil Soil Soil

S15-Ma18858 S15-Ma18859 S15-Ma18860

Mar 20, 2015

BH2 6.9-7.0 BH2 6.4-6.5

BH1 SPT 2.5- Mar 19, 2015 2.95

BH1 SPT 5.5-5.95

Mar 20, 2015

× × × ×

S15-Ma18862

S15-Ma18861

Mar 20, 2015 Mar 19, 2015

> BH2 SPT 2.5-2.95 BH2 SPT 5.5-5.95

Mar 20, 2015

×

×

Brisbane Laboratory - NATA Site # 20794

BH2 5.8-5.9 Mar 20, 2015

**External Laboratory** 

Page 6 of 9 Report Number: 451773-S



#### Eurofins I mgt Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

#### UNITS

mg/kg: milligrams per Kilogram ug/I: micrograms per litre ppb: Parts per billion org/100ml: Organisms per 100 millilitres MPN/100mL: Most Probable Number of organisms per 100 millilitres

ppm: Parts per million %: Percentage NTU: Nephelometric Turbidity Units

mg/l: milligrams per litre

#### TERMS

Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr-Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

#### **QC-ACCEPTANCE CRITERIA**

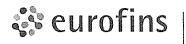
RDDuplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.


#### **OCDATA GENERAL COMMENTS**

- Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.</p>
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6, pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 🍞. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 🧐, For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	S15-Ma18835	CP	pH Units	7.5	7.5	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)*	S15-Ma18835	CP	pH Units	5.9	5.9	pass	30%	Pass	
Reaction Ratings*	S15-Ma18835	CP	comment	Slight	Slight	pass	30%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	S15-Ma18845	CP	pH Units	8.0	8.0	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)*	S15-Ma18845	СР	pH Units	8.3	8.3	pass	30%	Pass	
Reaction Ratings*	S15-Ma18845	CP	comment	Vigorous	Vigorous	pass	30%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	S15-Ma18855	CP	pH Units	7.1	7.2	pass	30%	Pass	
pH-FOX (Field pH Peroxide test)*	S15-Ma18855	CP	pH Units	6.8	7.0	pass	30%	Pass	
Reaction Ratings*	S15-Ma18855	CP	comment	Vigorous	Vigorous	pass	30%	Pass	



#### Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

### Authorised By

Charl Du Preez Richard Corner Analytical Services Manager Senior Analyst-Inorganic (QLD)

Glenn Jackson National Laboratory Manager Final report - this Report replaces any previously Issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

E understingt shall not be liable for less, cost, damages or expenses incurred by the cleart, or any other person or company, incruding from the use of any information or interpretation given in this report. In no case shall Eurofans Impt be lable for consequential damages including, but not limited by the leart is a consequential damages and accesses of the learn state o

				AS	4133 4.1						
Client:						As received					
Address:	Suite 2.05 5	6 Delhi Ro	Storage History:	Core Box							
Project:	28 Shepher	Report No:	\$2752-PLT								
Job No:	\$15085				Date Tested:	2/04/2015					
est Proce											
ampling: reparatio			Client accordance with the t	est method			Date	Sampled:		19-23/3/15	
reparatio		rioparoa m									
Sample Number	Borehole ID	Depth (m)	Sample Description	Test Type	Average Widlh (mm)	Platen Seperation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes	
S2752	BH1	9.75-	Siltstone	Diametral	-	52.0	0.92	0.34	0.35		
JE1 JE	Dill	9.85	Sitistone	Axial	52.0	50.0	1.07	0.32	0.34		
62762	0114	10.80-	<u>.</u>	Diametral	-	52.0	1.86	0.69	0.70		
S2753	BH1	10.90	Siltstone	Axial	52.0	46.0	3.00	0.99	1.03		
		11.80-	Siltstone	Diametral	-	52.0	2.53	0.93	0.95		
S2754	BH1	11.90		Axial	52.0	43.0	2.20	0.77	0.80		
		12.90- 13.00	Siltstone	Diametral	-	52.0	1.63	0.60	0.61		
S2755 BH1	BH1			Axial	52.0	42.0	2.26	0.81	0.83		
	-	9,38-		Diametral	-	52.0	0.27	0.10	0.10		
S2756	BH2	9.48	Siltstone	Axial	52.0	40.0	0.25	0.09	0.09		
		BH2 10.40- 10.50	Siltstone	Diametral	-	52.0	2.14	0.79	0.81		
\$2757	BH2			Axial	52.0	40.0	1.89	0.71	0.72		
		11.32- 11.40	Siltstone	Diametral	-	52.0	1.42	0.52	0.53		
S2758	BH2			Axial	52.0	39.0	4.10	1.59	1.60		
		7.60-		Diametral	-	52.0	0.10	0.04	0.04		
S2759	BH3	7.70	Siltstone	Axial	52.0	47.0	1.83	0.59	0.62		
		13 8.60- 8.70		Diametral	-	52.0	2.21	0.82	0.83		
S2760	BH3		Siltstone	Axial	52.0	45.0	3.06	1.03	1.07		
	0.00	9.54-		Diametral	-	52.0	0.91	0.33	0.34		
S2761	BH3	9.62	Siltstone	Axial	52.0	40.0	1.84	0.69	0.70		
Com	ments:	**					<u></u>				
NA	doou com	iment are trace	ests, calibrations and/or mi able to Australian/national D/IEC 17025. This docume	standards. Accredited	for		d Signa	tory:		2/04/2015	
\$* 			ited Laboratory Nuπ	· · · · · · · · · · · · · · · · · · ·		Chris I	Lloyd			Date:	
	OUARIE DŢECH			Facility Name: Sydne; Facility Location: 8/10 Site No.: 22365		lexandria NSW	2015			Macquarie Geotechnic 3 Walt Drive BATHURST NSW 27	

		P	OINT LO	AD STRE	NGTH	INDE)	( RE	POR	Г		
				AS4	1133 4.1						
Client:	Asset Geot	echnical	Moisture Content Condition:	As received							
Address:	ldress: Suite 2.05 56 Delhi Road, North Ryde NSW 2113					Core Box	Sore Box				
Project: 28 Shepherd Street, Liverpool (2936)					Report No:	\$2562-PLT	32562-PLT				
Job No:	S15085				Date Tested:	2/04/2015					
Test Proc	edure:	7		Rock strength tests - Determination	in of point load strength i	ndex					
Sampling		Sampled by					Date	Sampled:		19-23/3/15	
Preparatio	n:	Prepared in	accordance with the	lest method							
Sample Number	Borehole ID	Depth (m)	Sample Description	Test Type	Average Width (mm)	Platen Seperation (mm)	Failure Load (kN)	Point Load Index Is (MPa)	Point Load Index Is ₍₅₀₎ (MPa)	Notes	
	5114	9.61-	<b>61</b> 1	Diametral	-	52.0	2.22	0.82	0.83		
S2562	BH4	9.71	Siltstone	Axial	52.0	42.0	4.63	1.67	1.71		
corco	0114	10.70-	Siltstone	Diametral	-	52.0	2.38	0.88	0.90		
S2563	BH4	10.80		Axial	52.0	38.0	3.04	1.21	1.21		
							1				
							4				
						-					
					-						
	_						-				
						-					
								1			
				l			-				
		<u> </u>		I							
Con	nments:										
	state the second	e results of the t	ests, calibrations and/or m	easurements included in thi	5	Authorise	d Signa	tory:			
NA	The results of the tests, calobrations and/or measurements included in the document are traceable to Australiar/national standards. Accredied if the compliance with ISO/IEC 17025. This document shall not be reproduced except in full.					$\sim$		<u>-</u>	2/04/2015		
×	<u>N</u>	ATA Accred	lited Laboratory Nur	nber: 14874		Chris	Lloyd			Date:	
	(OUAR) DTECH			Facility Name: Sydney Facility Location: 8/10		lexandria NSW	/ 2015			Macquarie Geotechnical 3 Watt Drive	
	¢			Site No.: 22365						BATHURST NSW 2795	

Geotechnical Investigation 26-28 Shepherd Street, Liverpool, NSW Report No.E23125 GA Rev2, 21 December 2016

# APPENDIX D

**Vibration Limits** 



# VIBRATION LIMITS

German Standard DIN 4150 – Part 3: 1999 provides guideline levels of vibration velocity for evaluating the effects of vibration in structures. The limits presented in this standard are generally considered to be conservative.

The DIN 4150 values (maximum levels measured in any direction at the foundation, OR, maximum levels measured in (x) or (y) directions, in the plane of the uppermost floor), are summarised in **Table A** below.

It should be noted that peak vibration velocities higher than the minimum figures in **Table A** for low frequencies may be quite 'safe', depending on the frequency content of the vibration and the actual conditions of the structures.

It should also be noted that these levels are 'safe limits', up to which no damage due to vibration effects has been observed for the particular class of building. 'Damage' is defined by DIN 4150 to include even minor non-structural cracking in cement render, the enlargement of cracks already present, and the separation of partitions or intermediate walls from load bearing walls. Should damage be observed at vibration levels lower than the 'safe limits', then it may be attributed to other causes. DIN 4150 also states that when vibration levels higher than the 'safe limits' are present, it does not necessarily follow that damage will occur. Values given are only a broad guide.

# Table A DIN 4150 – Structural Damage – Safe Limits for Building Vibration

		Peak Vibration Velocity (mm/s)							
Group	Type of Structure	At Found	Plane of Floor of Uppermost Storey						
		Less than 10 Hz	10 Hz to 50 Hz	50 Hz to 100 Hz	All Frequencies				
1	Buildings used for commercial purposes, industrial buildings and buildings of similar design	20	20 to 40	40 to 50	40				
2	Dwellings and buildings of similar design and/or use	5	5 to 15	15 to 20	15				
3	Structures that because of their particular sensitivity to vibration, do not correspond to those listed in Group 1 and 2 and have intrinsic value (e.g. buildings that are under a preservation order)	3	3 to 8	8 to 10	8				

Note: For frequencies above 100 Hz, the higher values in the 50 Hz to 100 Hz column should be used.



Geotechnical Investigation 26-28 Shepherd Street, Liverpool, NSW Report No.E23125 GA Rev2, 21 December 2016

# APPENDIX E

**IMPORTANT INFORMATION** 



# **Important Information**



## SCOPE OF SERVICES

The geotechnical report ("the report") has been prepared in accordance with the scope of services as set out in the contract, or as otherwise agreed, between the Client And Environmental Investigations Pty Ltd ("EI"). The scope of work may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

### **RELIANCE ON DATA**

El has relied on data provided by the Client and other individuals and organizations, to prepare the report. Such data may include surveys, analyses, designs, maps and plans. El has not verified the accuracy or completeness of the data except as stated in the report. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations ("conclusions") are based in whole or part on the data, El will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to El.

## **GEOTECHNICAL ENGINEERING**

Geotechnical engineering is based extensively on judgment and opinion. It is far less exact than other engineering disciplines. Geotechnical engineering reports are prepared for a specific client, for a specific project and to meet specific needs, and may not be adequate for other clients or other purposes (e.g. a report prepared for a consulting civil engineer may not be adequate for a construction contractor). The report should not be used for other than its intended purpose without seeking additional geotechnical advice. Also, unless further geotechnical advice is obtained, the report cannot be used where the nature and/or details of the proposed development are changed.

### LIMITATIONS OF SITE INVESTIGATION

The investigation programme undertaken is a professional estimate of the scope of investigation required to provide a general profile of subsurface conditions. The data derived from the site investigation programme and subsequent laboratory testing are extrapolated across the site to form an inferred geological model, and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Despite investigation, the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration program, no matter how comprehensive, can reveal all subsurface details and anomalies. The engineering logs are the subjective interpretation of subsurface conditions at a particular location and time, made by trained personnel. The actual interface between materials may be more gradual or abrupt than a report indicates.

### SUBSURFACE CONDITIONS ARE TIME DEPENDENT

Subsurface conditions can be modified by changing natural forces or man-made influences. The report is based on conditions that existed at the time of subsurface exploration. Construction operations adjacent to the site, and natural events such as floods, or ground water fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report. El should be kept appraised of any such events, and should be consulted to determine if any additional tests are necessary.

## VERIFICATION OF SITE CONDITIONS

Where ground conditions encountered at the site differ significantly from those anticipated in the report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the report that EI be notified of any variations and be provided with an opportunity to review the recommendations of this report. Recognition of change of soil and rock conditions requires experience and it is recommended that a suitably experienced geotechnical engineer be engaged to visit the site with sufficient frequency to detect if conditions have changed significantly.

## **REPRODUCTION OF REPORTS**

This report is the subject of copyright and shall not be reproduced either totally or in part without the express permission of this Company. Where information from the accompanying report is to be included in contract documents or engineering specification for the project, the entire report should be included in order to minimize the likelihood of misinterpretation from logs.

### **REPORT FOR BENEFIT OF CLIENT**

The report has been prepared for the benefit of the Client and no other party. El assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of El or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own inquiries and obtain independent advice in relation to such matters.

### **OTHER LIMITATIONS**

El will not be liable to update or revise the report to take into account any events or emergent circumstances or fact occurring or becoming apparent after the date of the report.